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Abstract The problem of local buckling, debonding initiation and growth process of the debonding of a bonded
two-layer plate is treated. In the weaker layer of the plate, compression appears due to the external compres-
sive axial force and bending moment. The conditions for local buckling of the weaker layer have been studied
where the possibility that the stress state in the layers could be in elasto-plastic domain has been considered. A
mathematical model is developed to determine the bending displacements of laminate layers after the weaker
layer buckles locally, and in the state after the plate has been unloaded. The third-order theory introduced by
Chwalla has been implemented. Mechanical properties of the layers and adhesive used in the numerical model
were measured with experiments. Experimental work comprised the determination of mechanical properties of
the chosen materials and experimental verification of the presented mathematical model. Numerically obtained
results are compared with those obtained by an experimental approach, and are found to be in good agreement.

Keywords Local buckling · Debonding growth process · Loading process · Unloading process · Experimental
verification

List of symbols

i Subscript denoting the number of layers
L,U,R Subscript denoting loading, unloading and state after unloading
Ai Cross section of a layer
b Width of plate
Ei Young’s modulus in the elastic domain
Eti Tangent modulus in the plastic domain
hi Thickness of layer
hN Internal height of debonded area
hZ External height of debonded area
Mi(x) Internal bending moment
n.a. Neutral axis of layer
Ni(x) Internal axial force
Qi(x) Internal shear force
vi(x) Bending displacement of layer
yNi(x) Position of neutral axis
αi(x) Angle of inclination
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�yNi(x) Distance between the centroid and the neutral axis
κi(x) Curvature of layer
σq(εq) Tensile stress in adhesive
σxi(x) Stress in layer
σy Yield stress

1 Introduction

Through-width delamination [1] is a defect of multilayer plates that can appear due to various reasons. It may
be caused by external bending moment, external compressive axial force or both of them acting at the same
time on parallel edges of a laminate (Fig. 1). Initial defects in laminates and bonded multilayer plates occur in
domains between layers where adhesion is imperfect. These domains are very sensitive to layer local buckling.

Extensive research of delamination in plates caused by local buckling due to external compressive forces
began in the late 1970s [2]. Numerous analytical and numerical models have been developed and solved
mainly by the finite element method (FEM), as reported in [3–6]. In the early 1990s, a number of research
studies focused on the bearing strength of the plates in the postbuckled state [2,6]. The postbuckled state is the
deformed state into which a plate enters after the external load has exceeded its critical value. Initial defects,
especially in bonded multilayer plates, can show up in one or more debonded areas with decreased adhesion or
loss of adhesion in the adhesive between the layers. Some researchers have also studied and analyzed condi-
tions under which local buckling could occur in the laminates without initial defects, as reported in [7] and [8].
Their work shows that certain combinations of external compressive or bending loads and bonding material
quality may lead to local buckling even if no initial defects are present. However normally it would occur due
to the presence of an initial defect in the bonding material.

The main goal of our research was to develop and experimentally verify a suitable mathematical model
for the definition of mechanical, geometrical and material parameters at which the weaker layer of a bonded
two-layer plate can buckle locally if the plate is loaded by external compressive force and bending moment. An
evaluation is made of the growth of the debonded area and the bending displacement states of the layers when
the external bending moment is growing due to a constant compressive force, and in the state after unloading.

2 Formulation of the problem

An ideally flat, bonded two-layer plate with the rigidity of layer 1 much bigger than that of layer 2 is chosen for
the discussion (Fig. 2). The plate is chosen so that it is rigidly fixed at point T. It is assumed that at the begin-
ning of loading the layers are bonded along their entire length with an adhesive having a certain stress–strain
relation defined by the function σq = σq (εq). The thickness of the adhesive layer is much smaller than that of
the metal layers, and can therefore be neglected. The plate is loaded with external compressive axial force F0
and bending momentM0 (Fig. 2). In the weaker layer 2, internal compressive force appears due to the chosen
direction of the moment M0. At certain loads, mechanical properties and geometry of the plate, layer 1 bends
whereas layer 2 buckles locally into a shape with minimal potential energy. Due to the symmetrical supports
and loads the deformed shape of the plate is symmetrical, only half of the plate can be treated.

Fig. 1 Through-width delamination
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Fig. 2 The right-hand part of plate

Fig. 3 Stress–strain relationships of layers 1 and 2

The loading model is chosen so that 90% of the compressive force that should induce local buckling of
layer 2 is performed by the force F0 while the remaining part is the bending moment M0. The geometry of
the plate is chosen so that the local buckling of the weaker layer could take place in the elasto-plastic domain
of both layers. Layers are made of materials having an elastic, linear strain-hardening stress–strain relation
(Fig. 3).

Thus the stress in the plastic domain can be defined by the expression:

σx = σy + Et(εx − εy) , (1)

where εy is the strain at the yield stress.
The process of debonding of the plate in the postbuckled state is observed at a constant external compressive

force F0 and increasing bending moment M0.

3 Mathematical model for the determination of the bending displacements and stress states in the plate

We will divide the process of debonding into three different physical phases. In the first phase, considering the
second-order theory [9], we will determine the bending displacement state of the layers in the moment right
after local buckling of layer 2, the force, and the critical external bending moment at which the unstable state
in layer 2 occurs. This state will be called state “0”. In the second phase, the plate is in the postbuckled state,
here called state “1”. In this phase, considering the exact expression for the curvatures of the layers during
the increasing external loads, we will determine stresses and bending displacement states of the plate. We will
analyze the conditions for growth of the debonded area. In the third phase, the bending displacement state of
the plate after unloading will be obtained.

3.1 Bending displacements in the moment right after local buckling
of layer 2—Phase 1

Since in the postbuckled state the plate is symmetrical with respect to the y-axis, the tangents to both layers at
points A and B are parallel to x-axis (Fig. 2). The equilibrium states of the internal forces and internal bending
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Fig. 4 Measured stress–strain relationship of the adhesive

moments are analyzed on small elements, which are cut from the plate in its deformed state. It is assumed that,
prior to loading, the plate is ideally flat. Therefore the bending displacements of the layers right after buckling
of layer 2 are very small. Thus, for the determination of the bending displacements in this indifferent state, we
can use the theory of small bending displacements, according to which the radius of curvature is defined by a
simplified equation ρ−1(x) = d2v(x)

dx2 = v′′(x).
In the mathematical model for the determination of the bending displacements of the layers, we con-

sider the actual rheological model of the adhesive. The strain of the bonded joint is defined by equation
εq(x) = �l

exp
q (x)

/
h̄A, where �lexp

q (x) is the experimentally measured elongation of the bonded joint and
h̄A the average thickness of the adhesive layer. An example of the measured stress–strain relationship of the
adhesive is shown in Fig. 4.

We can see that this relationship is uniform and nonlinear in the whole strain region εq(x). Such relationship
could not easily be expressed using elementary functions. Thus, we introduce the modulus of the adhesive
cq
[
�l

exp
q (x)

] = σq
(
εq
)/
εq .

The method for the determination of the modulus cq is described later in this paper. The function of the
force of the adhesive between layers per unit width can be expressed by this modulus as follows [9] (Fig. 11):

q(x) = −cq
[
�lexp

q (x)
]
�lnum

q (x), (2)

where �lnum
q (x) = v2L(x) − v1L(x). Using the second-order theory, we can get a system of two differential

equations for the equilibrium state of internal bending moments on the deformed layers 1 and 2 in the moment
of the local buckling of layer 2. This state will be called state “0” and denoted by a superscript 0. These two
differential equations can be written as follows:

v
0(IV )
iL (x)−ω2

iL v
0′′
iL(x)+ψ2

iL

{
cq
[
�lexp

q (x)
]} [

v0
2L(x)−v0

1L(x)
]=0, i=1, 2, (3)

where ω2
iL(x) = N0

iL/Di(x), ψ
2
iL

{
cq
[
�l

exp
q (x)

]} = cq
[
�l

exp
q (x)

]
/Di(x), Di(x) is the flexural rigidity of

layer i and N0
iL is the internal axial force in state “0” in layer i (i = 1, 2). The axial forces N0

iL(x) depend on
the angles of inclination of the layers, which in state “0” are very small; thus the forces N0

iL can be considered
as constants. The flexural rigidities of the layers are expressed as follows:

D1(x) = b
{
E1(y

3
01 + y3

N1L)
/

3 + E1y01
[
(h1 − yN1L)

2 − y2
01

]/
2

+Et1
{[
(h1 − yN1L)

3 − y3
01

]/
3

−y01
[
(h1 − yN1L)

2 − y2
01

]/
2
}}
, (4)

D2(x) = b
{
E2

[
y3

02 − (δyN2L)
3
]/

3 + E2y02
[
(h2 − yN2L)

2 − (δy02)
2
]
2

−δEt2
{[
(h2 − yN2L)

3 + (δy02)
3
]/

3

+δy02
[
(h2 − yN2L)

2 − (δy02)
2
]
2
}}
, (5)
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where δ = 1 for 0 ≤ |x| < LP/2 and δ = −1 for LP/2 < |x| ≤ L0/2. According to Fig. 2, we can write the
following nonhomogeneous boundary conditions:

1. v0
1L(0) = 0; 2. v0′

1L(0) = 0; 3. v0′
2L(0) = 0

4. v0
1L (L0/2) = v0

2L (L0/2) ; 5. v0′
1L (L0/2) = v0′

2L (L0/2)
6. M0

1L (L0/2) = D1 (L0/2) v0′′
1L (L0/2)

= M0 (1 − b1/L1)−MBL − F0v
0
1L (L0/2)

−N2BL
[
v0

2L(0)− v0
1L (L0/2)

]

7. M0
2L (L0/2)=D2 (L0/2) v0′′

2L (L0/2)=−MBL−N2BL
[
v0

2L(0)−v0
2L (L0/2)

]

8. Q0
1L (L0/2) = D1 (L0/2) v0′′′

1L (L0/2) = − (N2BL − F0) v
0′
1L (L0/2) .

(6)

Applying the second-order theory, we can accept the following simplified expression for the shear force
Q0

1L (L0/2) in the boundary conditions (6):

Q0
1L (L0/2) = − (N2BL − F0) sin α0

1L (L0/2) ≈ − (N2BL − F0) v
0′
1L (L0/2) .

The set of equations (3) is nonlinear. An analytical solution would be very difficult to obtain, thus, we will try
to get a numerical solution. Using the method of finite differences, we divide the length (L0/2) into n = 100
intervals of equal length. In this way, considering the boundary conditions (6), we can transform solving of
the set (3) into solving a system of (2n + 8) nonhomogeneous linear equations and solve it numerically by
using the Gaussian elimination method [10]. The set of nonlinear equation (3) can be solved successively. In
the first step, we choose cq

[
�l

exp
q (x)

]
=0 and determine the deflections v0

iL(x) of the layer i (i = 1, 2) and
�lnum

q (x) = v2L(x)−v1L(x). From the diagram of cq
(
�l

exp
q

)
(Fig. 19), we determine the modulus cq

(
�lnum

q

)
.

The described procedure is repeated until the following condition is fulfilled:
∣∣�lnum

q (j)−�lnum
q (j − 1)

∣∣ ≤ ε.
The chosen accuracy ε = 10−5 mm is reached after eight steps. Thus, we obtain the bending displacements
v0
iL(x) of layer i (i = 1, 2) in the domain 0 ≤ |x| ≤ L0/2 in the state “0”.

3.2 The force at which an unstable state in layer 2 occurs and the critical external bending moment

In the described model for the determination of the bending displacements of layers in the moment right
after local buckling of layer 2, the internal axial force N2BL in layer 2 and the external bending moment M0
(Fig. 2) are treated as unknowns. Layer 2 buckles locally in the moment at which the compressive axial force
in the layer reaches the critical value, N cr

2L. Furthermore, it is assumed that layer 2 is bonded to layer 1 with
an adhesive whose rigidity is represented by the modulus cq . The bending moment in layer 2 at point C is
M0

2L (L0/2) = k v0′
2L (L0/2), where k is expressed by the equation: k = 2L1Deq (L0/2) /L0 (L1 − L0). Here,

the flexural rigidity is

Deq(x) = b
{
T1(x) h1

[
h2

1 − 3h1 yNL + 3y2
NL

]+ T2(x) h2
[
h2

2 + 3h1 (h1 + h2)

−3 (2 h1 + h2) yNL + 3 y2
NL

]} /
3 , (7)

where Ti(x) = Di(x)
/
Izi , Izi = bh3

i

/
12 is the second moment of area of layer i (i = 1, 2), and yNL= yNL( x)

is the distance of the neutral axis from the bottom plane of the plate (Fig. 5).

Fig. 5 Normal stress in the plate due to F0 and M0
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The differential equation of the beam on the foundation is

v
0(IV )
2L (x)+ ω2

2L v
0′′
2L(x)+ ψ2

2L

[
cq
(
�lexp

q

)]
v0

2L(x) = 0. (8)

It can be solved considering the following homogeneous boundary conditions:

1. v0′
2L(0) = 0; 2. v0

2L (L0/2) = 0
3. Q0

2L(0) = D2(0)v0′′′
2L (0) = −cq(0)b v0

2L(0)
4. M0

2L (L0/2) = D2 (L0/2) v0′′
2L (L0/2) = k (L0/2) v0′

2L (L0/2) .
(9)

By using the QR algorithm [10], we can transform the solving of Eq. (8) into numerical solving of an appropriate
eigenvalue problem, and so we get the critical force N cr

2L.
The plate is first loaded with a force F0 that in layer 2 induces an axial force NF0

2L, which is smaller than
the critical force N cr

2L by the aforementioned 10%. The plate is then loaded by an external bending moment
Mcr

0 , due to which an axial force NM0
2L is induced in layer 2, which now buckles locally.

Normal stress in layers 1 and 2 having elastic, linear strain hardening stress–strain relations (Figs. 3 and 5)
due to the described loads can be expressed by equation:

σxL (yL) = σ
F0
xL + σ

M0
xL (yL)

=






N
F0
1L
A1

− E1κ
cr
L yL; −yNL<yL≤h1 − yNL

N
F0
2L
A2

− E2κ
cr
L yL; h1 − yNL≤yL < y02

N
F0
2L
A2

− σy2 − Et2κ
cr
L (yL − y02) ; y02 ≤yL≤h1 + h2 − yNL

(10)

whereNF0
iL is the internal axial force in layer i (i = 1, 2) due to forceF0 and κcr

L the curvature of the neutral axis
of the plate in the moment of the local buckling. The forces NF0

iL follow from the equilibrium condition for the
axial forcesNF0

1L+NF0
2L−F0 = 0 (Fig. 2) and from the distribution of the force F0 to the layers, which is based

on the equality condition for the strains of layers due toF0 [11]: εF0
x1L = N

F0
1L

A1E1
= ε

F0
x2L = N

F0
2L

A2Et2
−σy2

(
1
Et2

− 1
E2

)
.

After some rearrangement, we get the following expressions for the internal axial forces in layers due to F0:

N
F0
1L = A1E1

A1E1 + A2Et2

[
F0 − σy2A2Et2

(
1

Et2
− 1

E2

)]
,

N
F0
2L = A2Et2

A1E1 + A2Et2

[
F0 + σy2A1E1

(
1

Et2
− 1

E2

)]
.

On the cross section of the plate loaded with F0 and M0 there is a neutral axis where the normal stress (10) is
zero (Fig. 5). The position of the neutral axis yNL(x) follows from the equation:

∫
A
σxL (yL) dA = 0, where

A is the cross section of the plate:A = A1 +A2. The internal axial forceNM0
2L due toM0 isNM0

2L = N cr
2L−NF0

2L
and κcr

L = Mcr
0

[
Deq (L0/2)

]
. After rearrangement, we obtain the critical external bending moment:

Mcr
0 = 2Deq (L0/2)

b P2 (L0/2)

(
N cr

2L −N
F0
2L + σy2 A2

)
, (11)

where the flexural rigidity Deq(x) is determined by Eq. (7), and P2(L0/2) is

P2 (L0/2) = E2
{
y2

02 (L0/2)− [h1 − yNL (L0/2)]
2
}

+Et2
{
[h1 + h2 − yNL (L0/2)]

2 − y2
02 (L0/2)

}
.
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Fig. 6 Normal stress in layer 1

3.3 Stresses and bending displacement states of the debonded part of the plate
in the postbuckled state—Phase 2

After the local buckling process of layer 2 has been completed, the plate is in the postbuckled state. In the
moment right after layer 2 has locally buckled (state “0”), the plate is loaded with axial force F0 and critical
bending moment Mcr

0 . From the previously derived bending displacement states in state “0”, the curvatures

of layers κ0
iL

(
Mcr

0 , F0, x
) = v0′′

iL(x){
1+[v0′

iL(x)]
2
}3/2 , i=1, 2, the stresses, internal axial forces and internal bending

moments in the layers are obtained.
The stress in layer 1 (Fig. 6) due to the axial force and bending moment, considering Eq. (1), is expressed

as follows:

σx1L (y1L) = σ
F0
x1L + σ

M0
x1L (y1L)

=
{

− σy1

y01
y1L; −yN1L ≤ y1L ≤ y01

−σy1 − Et1
E1

σy1

y01
(y1L − y01) ; y01 < y1L ≤ h1 − yN1L

(12)

The depth of the plastified domain of the cross section can be expressed at the point between the elastic and
plastic domain of the cross section of layer 1: y01(x) = σy1

/[
E1κ

0
1L(x)

]
. The radius of curvature κ−1

1L (x)
refers to the neutral axis. Considering Eq. (12), we obtain the internal axial force and bending moment from
equilibrium conditions for the internal axial forces and bending moments:

N0
1L(x) = −

∫

A1

σx1L (y1L) dA1 (y1L)

= −b
{

σy1

(
y2

01 − y2
N1L

)

(2y01)
+ σy1 (h1 − yN1L − y01)

(
1 − Et1

E1

)

+Et1κ0
1L

[
(h1 − yN1L)

2 − y2
01

] /
2

}

(13)

M0
1L(x) = −

∫

A1

σx1 (y1L) y1L dA1 (y1L)

= −b {σy1
(
y3

01 + y3
N1L

)
/ (3y01)

+σy1
[
(h1 − yN1L)

2 − y2
01

] (
1 − Et1

/
E1
) /

2

+Et1κ0
1L

[
(h1 − yN1L)

3 − y3
01

] /
3
}
, (14)

where dA1(y1L) = bdy1L. From Fig. 2, we can see that on the bending displacements curve of layer 2 after
local buckling an inflection point at |x| = LP/2 exists where the curvature κ0

2L changes its sign. At this point
only the stress due to the internal axial force N0

2L exists. Hence, we consider two domains of layer 2 in which
we analyze the stress, internal axial force and bending moment.
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Fig. 7 Normal stress in layer 2 in the domain 0≤ x < LP /2

Fig. 8 Normal stress in layer 2 in the domain LP < x ≤ L0/2, κ2L >0

The stress in the domain 0 ≤ |x| < LP/2 (Fig. 7), considering Eq. (1), is:

σx2L (y2L) = σ
F0
x2L + σ

M0
x2L (y2L)

=
{
σy2

y02
y2L; −yN2L ≤ y2L ≤ −y02

−σy2 + Et2
E2

σy2

y02
(y2L + y02) ; −y02 < y2L ≤ h2 − yN2L

(15)

The stress in the domain LP/2 < |x| ≤ L0/2 (Fig. 8) is also expressed in a similar way:

σx2L (y2L) = σ
F0
x2L + σ

M0
x2L (y2L)

=
{

− σy2

y02
y2L; yN2L ≤ y2L ≤ y02

−σy2 − Et2
E2

σy2

y02
(y2L − y02) ; y02 < y2L ≤ h2 − yN2L

(16)

The depth of the plastified domain of the cross section is: y02(x) = σy2
/[
E2κ

0
2L(x)

]
. The internal axial force

and bending moment can be obtained in a similar way as above for layer 1:

N0
2L(x) = b

{
δσy2

[
y2

02−(δyN2L)
2
]/

2y02−σy2 (h2−yN2L + δy02)
(
1−Et2

/
E2
)

+δEt2 κ0
2L

[
(h2−yN2L)

2 − (δy02)
2
]/

2
}

(17)

M0
2L(x) = b

{
δ
σy2

3 y02

[
y3

02−(δyN2L)
3
]− σy2

2

[
(h2−yN2L)

2−(δy02)
2
] (

1−Et2
E2

)

+δEt2 κ0
2L

[
(h2 − yN2L)

3+(δy02)
3
]/

3
}
, (18)

where δ = 1 for 0 ≤ |x| < LP/2 and δ = −1 for LP/2 < |x| ≤ L0/2. After an increase in the bending
momentMcr

0 by�M0 at a constant force F0, layer 2 reaches the postbuckled state, called state “1” and denoted
by superscript 1. Using the third-order theory [9], we can write the following two differential equations for the
equilibrium state of internal bending moments on the deformed layers 1 and 2 in state “1”:

κ1′′
iL (x)−ω2

iL v
1′′
iL(x)+ψ2

iL

{
cq
[
�lexp

q (x)
]}[
v1

2L(x)−v1
1L(x)

]=0, i=1, 2.
(19)
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The curvature κ1
iL(x) of layer i in state “1” is:

κ1′′
iL (x) =






v1′′
iL(x){

1 + [
v1′
iL(x)

]2
}3/2






′′

, i = 1, 2, 0 ≤ x ≤ L0/2. (20)

According to Fig. 2, we can write the following nonhomogeneous boundary conditions:

1. v1
1L(0)=0; 2. v1′

1L(0)=0; 3. v1′
2L(0)=0

4. v1
1L (L0/2)=v1

2L (L0/2) ; 5. v1′
1L (L0/2) = v1′

2L (L0/2)
6. M1

1L (L0/2)=D1 (L0/2) v1′′
1L (L0/2)

= M0
(
1 − b1

/
L1
)−MBL + F0

[
v0
T L − v1

1L (L0/2)
]

−N2BL
[
v1

2L(0)− v1
1L (L0/2)

]

7. M1
2L (L0/2)=D2 (L0/2) v1′′

2L (L0/2)=−MBL−N2BL
[
v1

2L(0)−v1
2L (L0/2)

]

8. Q1
1L (L0/2)=D1 (L0/2) v1′′′

1L (L0/2)=− (N2BL − F0) sin α1
1L (L0/2) .

(21)

In the boundary condition for M1
1L (L0/2) in equation (21), we consider the bending deflection v0

T L in the
preceding step of loading, that is, in state “0”. In the jth step of loading, we consider the deflection vj−1

T L in the
(j − 1)th step of loading.

Using the method of finite differences, we transform the solving of the set of equations (19), considering
the boundary conditions (21), into solving a system of (2n + 8) nonhomogeneous nonlinear equations. We
solve it numerically by using the modified Powell’s algorithm [12]. As the initial bending displacements we
use those which were determined in state “0”: v0

1L(x) and v0
2L(x). Thus, we obtain the bending displacements

v1
iL(x) and curvatures κ1

iL(x) of layer i (i = 1, 2) in the domain 0 ≤ |x| ≤ L0/2 in state “1”. The internal axial
forces and bending moments follow from Eqs. (13), (14), (17) and (18) with the replacement of the superscript
“0” with “1”. The described procedure is repeated during the entire process of increasing bending momentM0
by �M0 at a constant force F0.

3.4 Bonded part of the plate—Phases 1 and 2

If the plate is cut through in the bonded domain in the very vicinity of point C (Fig. 9), the domain C–T can
be treated as a cantilever beam bonded of two layers having certain mechanical properties. We can replace the
influence of the left part cut off on its right by the external force F0 and the bending moments MCL and MTL.

For the equilibrium state of internal bending moment, we can obtain a differential equation for the deter-
mination of the bending displacements of the bonded part:

κ ′′
L(x)+ ω2

L

[
v′′
CL(x)+ v′′

L(x)
] = 0, (22)

where κL(x) is the curvature of the bonded part and ω2
L = F0

/[
Deq (L0/2)

]
. The second derivative of κL(x) is

determined by Eq. (20) and the flexural rigidityDeq(x) by Eq. (7). Considering the nonhomogeneous boundary

Fig. 9 Bonded part of the plate
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Fig. 10 Normal stress in the bonded part of the plate

conditions (Fig. 9)

1. vL (L0/2) = vCL; 3. v′
L (L1/2) = 0

2. v′
L (L0/2) = tan αCL; 4. v′′

L (L0/2) = v′′
CL = MCL

/[
Deq (L0/2)

] (23)

and by using the method of finite differences, we transform the solving of the differential equation (22) into
numerical solving of a system of (n+ 4) nonlinear equations. This is solved in the way described above with
n = 100 intervals. Thus we obtain the bending displacements vL(x) of the bonded part in all states during the
entire process of increasing the external loading.

Considering the stress–strain relations (1) of both layers and according to Fig. 10, we can determine the
normal stress in the bonded part due to the loading with the axial force and bending moment:

σxL (yL) =






−σy1 + Et1
E1

σy1

y0
(y0 + yL) ; −yNL ≤ yL < −y0

σy1

y0
yL; −y0 ≤ yL ≤ h1 − yNL

E2
E1

σy1

y0
yL; h1 − yNL ≤ yL ≤ h1 + h2 − yNL

(24)

From the way of loading and chosen materials of both layers it is shown that plastification first takes place in
layer 1. Therefore, the depth of the plastified domain can be determined in the point between the elastic and
plastic domain of the cross section of layer 1: y0(x) = σy1

/
[E1κL(x)]. The internal axial force and bending

moment follow from the equilibrium conditions, considering Eq. (24):

NL(x) = −
∫

A

σxL (yL) dA (yL)

= −b σy1

{
(yNL − y0)+ Et1

E1

1

y0

[
y0 (y0 − yNL)− 1

2

(
y2

0 − y2
NL

)]

− 1

2y0

[
(h1 − yNL)

2 − y2
0

]− E2

E1

h2

2y0
[h2 + 2 (h1 − yNL)]

}
(25)

ML(x) = −
∫

A

σxL (yL) yL dA (yL)

= −b σy1

{
1

2

(
y2

0 − y2
NL

)− Et1

E1

1

y0

[
y0

2

(
y2

0 − y2
N

)+ 1

3

(
y3
NL − y3

0

)]

− 1

3y0

[
(h1 − yNL)

3 + y3
0

]

−E2

E1

1

3y0

[
(h1 + h2 − yN)

3 − (h1 − yNL)
3
]}

(26)

3.5 Mechanism of growth of the debonded area

In the initial phase of the process, external loads are small and strains in both layers are equal. When the
external loads increase, the stress and strain in the adhesive increase too. At the moment of local buckling of
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Fig. 11 The length L0init of the initially debonded area, the length L2 over which adhesive bonds are torn apart and the length L0
of the debonded area

layer 2, the adhesive bonds between layers 1 and 2 can break at the weakest spot. This can occur due to the
presence of the initially debonded area of length L0init (Fig. 11). The plate in the debonded area splits into two
subsystems. The main subsystem is represented by layer 1, which at increasing external loads bends, while
the weaker layer 2 is the locally buckled layer. On the remaining part the plate remains bonded.

In the postbuckled state, the bending displacement states of the layers and the strains of adhesive bonds
change due to the increasing external bending momentM0 > Mcr

0 . These changes, considering the stress–strain
relation of the adhesive, result in an increase in the tensile stress in the adhesive. When this stress exceeds a
certain critical value, the adhesive bonds tear apart over domain L2 < L0 (Fig. 11). In the domain (L0 − L2)
the adhesive bonds are extended but not yet torn. Length L2 (Fig. 11) is defined on the basis of a limit strain
εqlim of the adhesive at a limit stress σqlim =0.1σq max (Fig. 4), where σq max is the maximal tensile stress in
the adhesive. In each state with increasing M0, the following equilibrium condition in the bonding layer, with
respect to point C, is fulfilled: Mqint(L0)−Mqext(M0) = 0, where Mqint(L0) is the internal bending moment
due to the rigidity of the adhesive bonds, andMqext(M0) the external bending moment which results in tearing
of the adhesive bonds. These moments are as follows:

Mqint (L0) = b

L0/2∫

L2/2

cq
[
�lexp

q (x)
] (L0

2
− x

)
dx;

Mqext (M0) = (vBL − vCL)N2BL (M0) , (27)

where vBL and vCL are the bending displacements of layer 2 at points B and C, respectively, and N2BL(M0) is
the internal axial force in layer 2 at point B (Fig. 2).

The moment Mqext increases with the increasing M0. The equilibrium of the moments Mqext and Mqint
during an increasing M0 can be fulfilled if the length L0 of the debonded area also increases. The length L0
reaches a maximal value L0 = L0 max at a certain limit value M0lim of the external bending moment. At this
moment, in the vicinity of point C in the debonded domain, a compressive stress in the bonding layer appears,
stopping any further growth of the debonded area. The maximal length L0 max can be calculated from the
equilibrium condition:Mqint(L0 max)−Mqext(M0 lim) = 0, whereMqint(L0 max) andMqext(M0lim) are obtained
from Eq. (27). On further increasing M0 > M0lim, the length L0 max remains unchanged.

3.6 The state after unloading of the plate—Phase 3

The process of unloading the plate (M0 → 0, F0 → 0) is completed within a very short period. During
this process, stresses in both layers decrease linearly with respect to strains. The cross section of layer 1 was
partially plastified during the loading (M0 �= 0, F0 �= 0). This is why after unloading layers it does not return
into the same undeformed state as prior to loading. At the moment of unloading, due to a ruined equilibrium
state, internal axial forces and internal bending moments in the layers appeared in the opposite direction to
that during loading.

After unloading has been completed, the equilibrium state in the plate is restored. The following relation-
ships exist between the internal forces and bending moments in layers 1 and 2 in the debonded part of the plate
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Fig. 12 Normal stresses in layer 1 in all three phases of the process

in all three phases of the process, that is, during the process of loading, during the process of unloading and in
the state after unloading:

NiR(x) = NiL(x)+NiU(x), QiR(x) = QiL(x)+QiU(x)
MiR(x) = MiL(x)+MiU(x), i = 1, 2, 0 ≤ |x| ≤ L0/2 .

(28)

The bending displacement states of layers 1 and 2 in the debonded part of the plate in all phases of the process
must satisfy the following conditions [13]:

viR(x) = viL(x)+ viU (x), i = 1, 2, 0 ≤ |x| ≤ L0/2, (29)

or in terms of curvatures:

κiR(x) = κiL(x)+ κiU (x), i = 1, 2, 0 ≤ |x| ≤ L0/2. (30)

In layer 1 (Fig. 12), the process of unloading follows a straight line in the σ–ε diagram. The neutral axis during
unloading coincides with the centroid c1 of the cross section and thus the curvature κ1U during unloading is:

κ1U(x) = −εM1U
x1U (x)

η1(x)
= −σM1U

x1U (η1)

[E1 η1(x)]
, (31)

where η1 = η1(x) is the distance from the centroid (Fig. 12).
The bending stress σM1U

x1U (η1) during unloading can be obtained by introducing Eq. (31) into Eq. (30)
and considering the following relationship between the coordinates η1, y1U and � yN1U (Fig. 12): η1(x) =
y1U(x)−�yN1U(x). After some rearrangement, we get:

σ
M1U
x1U (y1U) = (y1U −�yN1U)

(
σy1/y01 − E1 κ1R

)
. (32)

The stress σN1U
x1U due to the axial force N1U during unloading can be expressed by the force N1U and the cross

section A1. From Fig. 12 we can also see that between the stress σN1U
x1U , the curvature κ1U and the distance�yN1U ,

the following relationship exists: σN1U
x1U = −E1κ1U�yN1U . Introducing Eqs. (31) and (32) and expression for

η1(x) into the mentioned relationship, we get:

σ
N1U
x1U = N1U

/
A1 = const. = −E1 κ1U �yN1U = �yN1U

(
σy1

/
y01 − E1 κ1R

)
.

(33)

The stress during the unloading is the sum of Eqs. (32) and (33):

σx1U (y1U) = σ
N1U
x1U (y1U)+ σ

M1U
x1U (y1U) = y1U

(
σy1

/
y01 − E1 κ1R

)
. (34)

The axial force during unloading can be obtained from the equilibrium condition in the cross section of the
layer for internal axial forces:

N1U = −
∫

A1

σx1U (y1U) dA1 (y1U) = − b h1�yN1U
(
σy1

/
y01 − E1 κ1R

)
, (35)
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where is dA1(y1U) = bdy1U . The internal bending moment during unloading acts at the centroid and follows
from the equilibrium condition in the cross section of the layer for bending moments:

M1U = −
∫

A1

σx1U (y1U) y1U dA1 (y1U)

= −b h1
(
σy1

/
y01 − E1 κ1R

) (
h2

1 + 12�y2
N1U

)/
12. (36)

By introducing Eqs. (13), (14), (35) and (36) into Eq. (28), we get the resulting internal axial force and bending
moment in layer 1 in the state after unloading:

N1R = N1L +N1U for 0 ≤ |x| ≤ L0/2

N1R = −b
{
σy1

2y01

(
y2

01 − y2
N1L

)+ σy1 (h1 − yN1L − y01)

(
1 − Et1

E1

)

+Et1 κ1L

2

[
(h1 − yN1L)

2 − y2
01

]
}

− b h1�yN1U

(
σy1

y01
− E1 κ1R

)

(37)

M1R = M1L +M1U for 0 ≤ |x| ≤ L0/2

M1R = −b
{
σy1

3y01

(
y3

01 + y3
N1L

)+ σy1

2

[
(h1 − yN1L)

2 − y2
01

]
(

1 − Et1

E1

)

+ Et1 κ1L

3

[
(h1 − yN1L)

3 − y3
01

]}

−b h1

12

(
σy1

y01
− E1 κ1R

) (
h2

1 + 12�y2
N1U

)
. (38)

The process of unloading of layer 2 also follows a straight line in the σ–ε diagram. Since the bending dis-
placement curve of layer 2 has the inflection point | x| =LP /2 (Fig. 2), the unloading is treated in two separate
domains. Fig. 13 shows the stresses in the domain 0≤| x|< LP /2 in all three phases of the process, while Fig. 14
shows the stresses in the domain L P /2<| x|≤ L0/2.

The resulting internal axial force and bending moment in the state after unloading can be expressed in a
similar way as above for layer 1:

N2R = N2L +N2U

N2R = b

{
δ
σy2

2y02

[
y2

02 − (δyN2L)
2
]− σy2 (h2 − yN2L + δy02)

(
1 − Et2

E2

)

+δEt2 κ2L

2

[
(h2 − yN2L)

2 − (δy02)
2
]}

+δb h2�yN2U

(
σy2

y02
− E2 κ2R

)
(39)

M2R = M2L +M2U

M2R = b

{
δ
σy2

3y02

[
y3

02 − (δyN2L)
3
]− σy2

2

[
(h2 − yN2L)

2 − (δy02)
2
] (

1 − Et2

E2

)

+ δEt2 κ2L

3

[
(h2 − yN2L)

3 + (δy02)
3
]}

− b h2

12

(
σy2

y02
− E2 κ2R

) (
h2

2 + 12�y2
02U

)
, (40)

where δ=1 for 0 ≤ |x| < LP/2 and δ = −1 for LP/2 < |x| ≤ L0/2.
The unloading of the bonded part of the plate also reaches completion in the elastic stress domain of both

layers (Fig. 15). After the process of unloading has been completed, the equilibrium state in the bonded part
is restored.
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Fig. 13 Normal stresses in layer 2 in the domain 0≤| x|< LP /2 in all three phases of the process

Fig. 14 Normal stresses in layer 2 in the domain LP /2<| x|≤ L0/2 in all three phases of the process

Fig. 15 Normal stresses in the bonded part of the plate in all three phases of the process

The following relationships exist between the internal forces and bending moments in the bonded part
during loading, unloading and in the state after unloading:

NR(x) = NL(x)+NU(x), QR(x) = QL(x)+QU(x)

MR(x) = ML(x)+MU(x), L0/2 ≤ |x| ≤ L1/2 . (41)

The bending displacements and curvatures in all phases of the process must satisfy the following condition [13]:

vR(x) = vL(x)+ vU(x), κR(x) = κL(x)+ κU(x), L0/2 ≤ |x| ≤ L1/2.
(42)

The curvature κU during unloading refers to the neutral axis nU during unloading and has the opposite sign to
that during loading. It can be expressed by the coordinate η(x):

κU(x) = −σMU

x1U(η)

E1 η(x)
. (43)

The bending stress σMU

x1U(η) in layer 1 of the bonded part during unloading can be obtained by introduc-
ing Eq. (43) into Eq. (42) and considering the relationship between the coordinates η and yU (Fig. 15):
�yNU(x) = η(x)−yU(x). We also consider the relationship between the bending stresses in the layers during
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unloading: σMU

x2U/σ
MU

x1U = E2/E1. After rearrangement, we get:

σ
MU

x1U (yU) = (yU +�yNU)
(
σy1/y01 − E1 κR

) ;
σ
MU

x2U (yU) = E2/E1σ
MU

x1U (yU) (44)

The stresses in the layers due to the axial force during unloading follow by considering the relations: σNUx1U =
NU

/
A1 = −MU �yNU

/
Iz1 = constant, and σNUx2U

/
σ
NU
x1U = E2

/
E1:

σ
NU
x1U (yU) = −�yNU

(
σy1

/
y01 − E1 κR

) ;
σ
NU
x2U (yU) = −E2

/
E1σ

NU
x1U (yU) . (45)

The normal stress in the bonded part during unloading is the sum of Eqs. (44) and (45):

σxU (yU) = yU

(
σy1

y0
− E1 κR

){
1; −yNU ≤ yU ≤ h1 − yNU
E2/E1; h1 − yNU ≤ yU ≤ h1 + h2 − yNU

(46)

The internal axial force and bending moment in the bonded part during unloading can be obtained from the
equilibrium condition for the axial forces and bending moments:

NU = −
∫

A

σxU (yU) dA (yU)

= b [E1 h1 (h1 − 2yNU)+ E2 (2 h1 + h2 − 2yNU)]

× [
κR − σy1

/
(E1 y0)

] /
2 (47)

MU = −
∫

A

σxU (yU) yU dA (yU)

= b

2

{
E2

E1

[
(h1 + h2 − yNU)

3 − (h1 − yNU)
3
]+ (h1 − yNU)

3 − y3
NU

}

×
(
E1 κR − σy1

y0

)
, (48)

where dA(yU) = bdyU . The resulting internal axial force and bending moment after unloading follow by
introducing Eqs. (25), (26), (47) and (48) into Eq. (41):

NR = NL +NU for L0/2 ≤ |x| ≤ L1/2

NR = −b σy1

{
(yNL − y0)+ Et1

E1

1

y0

[
y0 (y0 − yNL)− 1

2

(
y2

0 − y2
NL

)]

− 1

2 y0

[
(h1 − yNL)

2 − y2
0

]− E2

E1

h2

2y0
[h2 + 2 (h1 − yNL)]

}

+b
2

[E1h1 (h1 − 2yNU)+ E2 (2h1 + h2 − 2yNU)]

(
κR − σy1

E1 y0

)
(49)

MR = ML(x)+MU(x) for L0/2 ≤ |x| ≤ L1/2

MR = −b σy1

{
1

2

(
y2

0 − y2
NL

)− Et1

E1

1

y0

[
y0

2

(
y2

0 − y2
NU

)+ 1

3

(
y3
NL − y3

0

)]

− 1

3y0

[
(h1 − yNL)

3 + y3
0

]− E2

E1

1

3y0

[
(h1 + h2 − yN)

3 − (h1 − yNL)
3
]}

+b
2

{
E2

E1

[
(h1 + h2 − yNU)

3 − (h1 − yNU)
3
]+ (h1 − yNU)

3 − y3
NU

}

×
(
E1 κR − σy1

y0

)
. (50)
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4 Experimental work

For experimental evaluation of the mathematical model, we chose a bonded two-layer plate-strip. The layers
are made of isotropic materials, while the bonding material is Neoprene adhesive having a certain rheolog-
ical model. Experimental work was performed using a Zwick Z050 electronic measurement device (EMD)
equipped with Multisens extensometers, nominal force 50 kN, crosshead travel resolution of 0.5 µm and mea-
surement range error 0.5% from 1/50 of the nominal force. The EMD makes it possible to load test pieces in
a combined way with tensile and compressive axial forces. In our experimental work, we first determined the
mechanical properties of the chosen materials of the layers and adhesive, and then experimentally verified the
mathematical model.

4.1 Mechanical properties of chosen materials

According to the standard [14], tensile tests were performed in order to measure the mechanical properties
of materials of the plate-strip layers. For the thicker layer, we chose Peral AlMg3, Impol Slovenska Bistrica,
Slovenia. For the weaker layer, we chose cold-reduced grain-oriented transformer steel Unisil-M 103-27P,
Orb Electrical Steel Ltd., Newport, South Wales, UK. The selection of the mentioned materials was based on
the observations during tensile tests, which showed that the stress–strain relationships of both materials were
elastic, linear and strain hardening (Fig. 16).

The following mechanical properties in the tensile stress domain were determined: Young’s modulus E in
the elastic domain, yield stress σy , strain εy at the yield stress and tangent modulus Et in the plastic domain,
see Table 1. We estimate that the measured mechanical properties of both materials can also be accepted in the
compressive stress domain.

For bonding the layers, Neoprene adhesive Neostik SK-101, Belinka Kemostik, Slovenia, was chosen.
According to the standard [15], the stress–strain relationship of the adhesive was measured on the series of 25
test pieces bonded from steel and Peral, see Fig.17.

Test pieces were loaded with the increasing tensile force F. The criterion for stopping the test was a pre-
scribed limit elongation of the bonded joint �lexp

q lim=3 mm at which adhesive bonds were to be torn apart. The
measured stress–strain relationships are shown in Fig.19.

Using the definition cq
[
�l

exp
q (x)

] = σq
(
εq
)/
εq , we tabulated the average modulus of the adhesive

cq
[
�l

exp
q (x)

]
with respect to the experimentally measured elongation�lexp

q (x) (Fig.19 right). The strain of the
bonded joint is defined by equation εq(x) = �l

exp
q (x)

/
h̄A, where h̄A=0.077 mm is the average thickness of the

adhesive layer. The modulus c q in the singular point �lexp
q = 0 was calculated by interpolating the tabulated

values. The mechanical properties of the materials of the layers and the average modulus cq were used as
inputs to compute the bending displacements of layers.

Fig. 16 Measured stress–strain relations for Peral AlMg3 (left) and Unisil-M 103-27P (right)

Table 1 Average values of mechanical properties of the materials of layers 1 and 2

Material E (N/mm2 ) σy (N/mm2 ) εy Et (N/mm2 )

Peral AlMg3 0.656×105 188.12 4.37×10−3 0.62×104

Unisil-M 103-27P steel 2.048×105 337.33 3.6×10−3 1×104
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Fig. 17 Standard test piece for determination of stress–strain relationship of the adhesive [15]

Fig. 18 Principle of compressive-bending experiment

4.2 Experimental verification of the mathematical model

Compressive-bending experiments were performed in order to see how the presented mathematical model
suited the real conditions. We chose a rigidly fixed plate-strip of width b = 10 mm. The average length of
test pieces was L̄1= 88.882 mm (Fig.18). The thickness of the layer made of Peral AlMg3 was h1=2 mm and
the thickness of the weaker layer made of Unisil-M 103-27P steel was h2=0.27 mm. A symmetrical initial
debonding was caused over a length L0init =15 mm (Fig.18) by inserting a d=0.19 mm thick wire into the plate
(Fig.21).

Due to the vertical orientation of the workplace, it would be very difficult to exert the bending load using a
couple of bending moments in the way proposed in the mathematical model. A bending load with a couple of
shear forces F exp

g was applied to the test pieces, which was made possible by a specially designed device that
was mounted onto the EMD. The method of determination of the forces F exp

g and distance a is explained in
Fig.20. In case a, the beam is loaded with bending moment M0, while in case b with a couple of forces F exp

g .
From the diagrams of bending moments in Fig.20, we can see that the described ways of bending loads are
not comparable with each other.

To obtain correct experimental results in the region of maximal length of debonded area the following three
conditions must be fulfilled:

1. The distance bM between the external moments M0 must be much larger than the maximal length of the
debonded area L0 max of the beam;

2. The maximal bending displacements vD of the beam at point D in cases a and b must be equal;
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Fig. 19 Measured stress–strain relationships (left) and average modulus cq of the chosen adhesive with respect to elongation
�l

exp
q (right)

Fig. 20 Method of determination of the shear force F exp
g

3. The maximal internal bending moment at the same point D in cases a and b must be equal. The force F exp
g

and distance a are as follows:

F exp
g = 2M0

b1

a2
1

; a =
(
3 bM − L̄1

)

2
. (51)

The internal bending moments over the length a > L0 max in both cases a and b are constant and equal:
Ma

max = Mb
max = Mmax. The differences between the bending displacements and relative differences between

internal bending moments at points G, E and D in both cases a and b are as follows:

�vG = va
G − vb

G = −3.867M0
/
(E Iz);

(
Ma

G −Mb
G

)
/Mmax = −0.1711

�vE = va
E − vb

E = 1.294 · 10−3M0
/
(E Iz);

(
Ma

E −Mb
E

)
/Mmax = 0

�vD = va
D − vb

D = 0; (
Ma

D −Mb
D

)
/Mmax = 0,

(52)

where Iz = bh3
/

12 is the second moment of area, b is the width, h is the thickness of the beam, E is theYoung’s
modulus, va

i and vb
i are the bending displacements at point i, i = G, E, D in case a and b, respectively. Before



Local buckling and debonding problem of a bonded two-layer plate

Fig. 21 Method of measurement of the external height hZ and length L0 of the debonded area

loading, a wire of diameter d was inserted between the layers on the initially debonded area of length L0init
(Fig. 21). The diameter d was equal to the previously calculated initial internal height hN init of the debonded
area right after local buckling (state “0”).

Using a couple of weightsF exp
g acting on the distance a, the bending load was applied to the test pieces. The

plate-strip was then loaded by increasing the compressive axial forceF exp
0 . After the axial force had reached the

critical value F exp
0 = F

exp
01 , the weaker layer entered the postbuckled state (state “1”). Bending displacements

of the layers exceeded the initial value d = hN init=0.19 mm. We measured the compressive axial forces F exp
01

in the mentioned state “1”. The axial force F0 was further increasing at a constant shear force F exp
g until it

reached the prescribed value F exp
02 = −685 N (state “2”). We measured the external height hexp

Z2 and length
L

exp
02 of the debonded area. The force F0 was further increasing at a constant force F exp

g until it reached the
prescribed maximal value F exp

03 = F
exp
0 max (Fig.22).

In this state, called state “3”, we measured the external height hexp
Z3 and lengthLexp

03 . As the criterion for stop-
ping the loading, we chose the axial compressive forceF exp

0 max that had previously been numerically determined.
In the state after unloading (state “4”), we measured the external height hexp

Z4 and length Lexp
04 .

The experiments were performed using 17 test pieces. Based on the measured results, we calculated the
average values of the length L̄ 1, critical force F̄ exp

01 for local buckling, external height h
exp
Z and length L

exp
0 of

the debonded area, see Table 2.

Fig. 22 State “3” at maximal axial force F exp
0 max at a constant shear force F exp

g
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Table 2 Average values of the measured results of compressive-bending experiments

State “0” State “1” State “2” State “3” State “4”

L̄ 1 (mm) F̄
exp
01 (N) h

exp
Z2 (mm) L

exp
02 (mm) h

exp
Z3 (mm) L

exp
03 (mm) h

exp
Z4 (mm)

88.882 −438.824 2.793 17.059 3.424 20.353 2.715

5 Numerical example

Based on the presented mathematical model a computer program was developed. It enables the determination
of the critical force Nnum

2Lcr and critical external moment Mnum
0cr at which the weaker layer buckles locally, the

computation of the displacement states of the layers in the moment after local buckling, during increasing
external loading and in the state after unloading. A numerical example was set up to see how the physical
model corresponded to the real conditions. A rigidly fixed plate-strip of width b = 10 mm, thickness of layer 1,
h1=2 mm, and thickness of layer 2, h2=0.27 mm, was chosen. Other dimensions were as shown in Fig.18. The
average values of the measured mechanical properties of the layers (Table 1), the modulus of the adhesive
cq
(
�l

exp
q

)
and the length of L0init = 15 mm over which the layers were initially debonded were considered.

Based on a chosen distance bM and length L1, the distance a=45.559 mm (Fig.20) was calculated.
The loading model was chosen so that the axial force F0 performed 90% of the compressive force for

local buckling of layer 2 while the remaining part was contributed by the bending moment M0. This is in
accordance with the assumption made in the mathematical model. In the moment of local buckling of layer 2
the following values were computed: critical force for local buckling: Nnum

2Lcr = −588.04 N; critical axial
force: F num

0cr = Nnum
2Lcr/0.9 = −653.38 N; critical bending moment:Mnum

0cr =304.14 N mm; the necessary weight:
F num
gcr =24.525 N; internal and external height of debonded area: hN init=0.19 mm and hnum

Z1 = 1.325 mm; initial
length of debonded area: L0init =15 mm.

The bending displacements v(x) in the following states of the loading process and in the state after unloading
were computed, see Fig.23:

– State “1”: Loading with F exp
01 = F num

0cr = −653.38 N and F exp
g = 24.525 N.

– State “2”: Loading with F exp
02 = −685 N at a constant value F exp

g = 24.525 N.
– State “3”: Loading with F exp

03 = −1433 N at a constant value F exp
g = 24.525 N.

– State “4”: State after unloading: F exp
04 = 0, F exp

g = 0.

From Fig. 23, we can see that the bending displacements increase with increasing axial force F exp
0 at a constant

weight F exp
g . The bending displacements of the bonded part of the plate-strip during increasing F exp

0 (states
“1”, “2” and “3”) were determined with an assumed rigid support of the plate-strip at point T, Fig. 2. After
unloading, i.e. in state “4”, the plate-strip flattens. Due to stresses in the elasto-plastic domain in state “3”, the
tangent to the bonded part of the plate-strip at the same point T is no longer parallel to the x-axis, Fig. 23.

Figure 24 presents the length Lnum
0 of the debonded area with respect to the bending moment Mnum

0 at a
constant force F exp

03 =−1433 N. The length of the debonded area suddenly increases from L0init =15.0 mm to
Lnum

0 =16.6 mm at a constant bending moment Mnum
0cr =304.14 N mm. This is a consequence of using the sec-

ond-order theory. The lengthL0 then increases with increasing bending moment and reaches its maximal value
Lnum

0 max=20.6 mm at the maximal bending momentMnum
0 max=404.54 N mm. After unloading of the plate-strip, the

length Lnum
0 max remains unchanged.

6 Discussion

The physical adequacy of the presented mathematical model was evaluated by comparing the numerically and
experimentally obtained results for the external height hZ and lengthL0 of the debonded area. The experimen-
tally obtained results in the three states of loading and in the state after unloading were compared by determining
relative differences with respect to numerically obtained values. Table 3 shows the relative differences ehZi
between the experimentally and numerically obtained results for external height hZ , where i = 1, 2, 3, 4 is the
number of the state. Table 4 shows the relative differences eL0i between the experimentally and numerically
obtained results for the length L0.

From Table 3, we can see that the maximal relative difference in the external height hZ occurs in state “3”.
The relative difference ehZ1 in state “2” is −1.1% and in state “4” is −4.5%, whereas the relative differences
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Fig. 23 Bending displacement states of plate-strip in the four states of the process

Fig. 24 Debonded length Lnum
0 with respect to the external bending moment Mnum

0

eL0 in states “3” and “4” are the same, i.e. −1.2% (Table 4). These tables show very good agreement between
the results obtained in both ways. This is, in our opinion, thanks to the use of the third-order theory in the
development of the mathematical model for the determination of the displacement states of the plate. In the
numerical example, the measured mechanical properties of the chosen materials of layers and adhesive were
considered.

All experimentally obtained results are slightly below the numerically obtained ones, which shows the
presence of certain nonidealities. We estimate that the existing differences between the results obtained in both
ways can be explained by the assumptions made in the mathematical model, which were the following:

1. The plate was taken to be ideally flat prior to loading.
2. In the numerical model, average mechanical properties of materials were considered. During measurement

of mechanical properties of the adhesive a certain scatter of results was observed, which is shown in the
description of the experimental work.

3. In the mathematical model, the bending load was considered to be performed by a couple of bending
moments while in the experiments, the bending load was performed by a couple of shear forces.

7 Conclusions

The problem of local buckling of the weaker layer of a two-layer plate loaded with external compressive force
and bending moment is treated. The conditions for the growth of the debonded area in the plate have been
studied. On the basis of the experiments it can be concluded that the axial force should be slightly lower than
the buckling force of the weaker layer. Instability and the local buckling process can appear when an additional
bending moment is applied to the plate. The numerical model also confirms this. To see how the presented
mathematical model suited the real conditions, a numerical example has been set up in which experimentally
obtained results were considered.
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The main subsystem bends due to the proposed external loads, while the remaining subsystem buckles
locally into a shape for which a minimal potential energy is needed. This shape is symmetric with respect to
the symmetric axis of the debonded area. Both subsystems remain bonded over a certain domain. From the
graphs it is shown that the length of the debonded area increases with increasing bending moment at a constant
axial force up to a certain limit value.

The physical adequacy of the mathematical model is evaluated by a comparison of experimentally and
numerically obtained results for the external height and length of the debonded area. The mentioned results
were compared in the three states of loading process and in the unloaded state by determining the relative
differences with respect to numerically obtained values. The maximum difference between the results for the
length of the debonded area is −10.2%. The maximum difference for the external height of the debonded area
is −8.6%. From these values it can be concluded that results obtained from the two methods are in sufficient
agreement.
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