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a b s t r a c t 

We provide a robust finite element formulation for quantitative prediction of surface wrin- 

kling of pressurized elastic shells on soft substrates. Our theory is build on three basic 

assumptions which involve thin shell kinematics, the approximation of the substrate re- 

sponse by a Winkler foundation and a model order reduction of the displacement field. 

Our element keeps all the nonlinear terms of the reduced model. The proposed formula- 

tion does not require any perturbations, either in the initial geometry or in the load, to 

incite the transition from fundamental to secondary equilibrium path for the considered 

set of shells, due to inherent asymmetric imperfections in the mesh. Numerical simula- 

tions using the derived element and an advanced path-following method on full spheres, 

hemispheres and spheroids show a very good quantitative agreement with theoretical pre- 

dictions and experiments on the characteristic wavelength of the pattern as well as the 

qualitative depiction of the pattern evolution. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Surface wrinkling is a mechanical instability that occurs when a thin flexible surface, bonded to a thick compliant sub-

strate, is subjected to a critical compressive load. At this load, the initially smooth surface bifurcates from a state of ho-

mogeneous compression into a short wavelength periodic pattern that minimizes the elastic energy by local bending of the

stiffer thin surface. The simplest example displaying this phenomenon is a beam on an elastic foundation, a model that

was used in early studies to describe periodic buckling of railway tracks and buried pipelines (see e.g. the seminal works of

Wieghardt [1] , Biot [2] and Reissner [3] ). Further research focused on the design of high-strength and light-weight elements

for aircraft architecture and incited intensive studies on stability of sandwich panels in which the skins were modeled as

plates and the core as a solid elastic medium (see e.g. Gough et al. [4] and Allen [5] for earlier investigations). Another

strong impetus for intensive studies of wrinkling came quite recently, when it was recognized that periodic surface pat-

terns may also exhibit many auspicious properties that can be exploited for advanced applications (see e.g. [6–13] ). In both

contexts – i.e., to either prevent the undesired wrinkling in engineering structures or to harness the auspicious properties

of the surface pattern – a sound theoretical model, which is able to accurately predict the surface morphology at all load

levels, is needed. It turns out that the complex response of the flexible-surface-soft-substrate system, due to e.g. strong

geometric nonlinearities, wrinkling pattern transitions, large number of meta-stable states, complex equilibrium paths, etc.,

makes surface wrinkling a remarkably hard problem to solve for general shapes. 
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Extensive experimental and theoretical studies have been done to explore the parameter space which controls the pattern

formation on various sizes and shapes of substrates. It was shown that wrinkling pattern may be controlled by the ratios of

Young’s moduli of the film and the substrate, coefficients of thermal expansion, growth/swelling coefficients, etc. (depending

on the external stress stimulus), film thickness, applied load, and the system’s curvature. With the exception of curvature,

the effects of these parameters are known today. For example, the relationship between the characteristic wavelength of the

wrinkling pattern, and the material and geometric properties was discovered by Gough et al. [4] in 1940. More recently, the

pattern selection mechanism for planar systems under equibiaxial loading was identified by Huang et al. [14] and Audoly

and Boudaoud [15] . They found that the checkerboard pattern has the lowest energy just above the critical load, but soon

after the load is increased further, the herringbone mode becomes the energy minimizer (see also Ref. [16] ). 

On the other hand, the available literature on wrinkling in curved systems still remains quite rare. Cao et al. [17] were the

first to investigate wrinkling in this context on microscopic sized spheres subjected to temperature loading and discovered

through experiments and numerical simulations by Abaqus [18] that spherical systems prefer hexagonal dimple patterns

at lower over-stress, and the labyrinthine (herringbone-like) pattern at higher over-stress. Other micro-scale experiments

on spherical surfaces by Breid and Crosby [19] and Yin et al. [20] as well as macro-scale experiments by Terwagne et al.

[13] confirm these results. The fact that the curvature of the system does play an important role in pattern selection was

also confirmed theoretically by Li et al. [21] and recently by Stoop et al. [22] . In their study, Li et al. [21] performed 3D

finite element simulations (and another numerical analysis involving spherical harmonics) on a neoHookean hyperelastic

bi-layer sphere wrinkled via volumetric shrinking. More general theoretical framework that simplifies the problem to radial

displacement field by reduction of the Koiters elastic shell theory [23] to the Swift-Hohenberg fourth order equation was

presented by Stoop et al. [22] . Their theory still preserves the essential geometric nonlinearities to display a quantitative

description of the curvature-pattern interaction at low over-stress and predicts the same wrinkle modes as observed in

previous studies [13,17,19–21] . 

Despite considerable research efforts, there are no simple and robust theoretical procedures able to accurately predict

wrinkling in curved bi-layer composites. Most of the studies, among which many provide important physical insights (only

a part of them is discussed above), are based on either simplified analytical procedures or numerical computations involving

commercial finite element analysis software like Abaqus. The latter have in common that rather limited details are reported

about used computational models. These include missing information about the type of elements, solution methods (lin-

ear buckling, nonlinear static, implicit or explicit dynamic, dynamic relaxation, inclusion of artificial viscous effects, etc.),

boundary conditions, assumed imperfections and/or perturbation loads, arc-length procedures, branch switching, etc. It is 

thus very difficult to reproduce the reported results. Such studies use very fine meshes, thus making the surface wrinkling

analysis extremely time consuming. In a lot of studies, a version of the 3D solid finite elements is used for both thin shell

and substrate, see e.g. [26,42] . Another common way of shell-core modelling is adopting shell elements with rotational de-

grees of freedoms for the shell and 3D solid elements for the substrate, see e.g. [30,43] . It should be noted in this respect

that representing the shell with one layer of solid elements, or coupling the shell and 3D solid elements without kinematic

constraints, may induce large modeling errors. 

Very few researchers develop their own numerical procedures. One of such studies is by Xu and Potier-Ferry [24] (see

also the references to their previous work within that paper). They investigated the formation and evolution of the wrin-

kling pattern on a soft corestiff cylindrical shell subjected to axial compression. The numerical part of the analysis was

based on a geometrically nonlinear 7-parameter shell model for the outer layer (see e.g. [34–36] ), approximated with an

8-node geometrically nonlinear 3D-shell element with reduced integration, whereas the core was discretized with an 8-node

linear 3D-solid element with reduced integration. Lagrange multipliers were applied to couple the corresponding nodal dis-

placements at the interface between both materials. One of the main contributions of their work was the utilization of the

asymptotic numerical method [25] to trace the post-buckling equilibrium and describe the phase diagram for the pattern

modes of this highly nonlinear problem. A small perturbation force was imposed on the shell in order to initiate buckling.

The computational model of Xu and Potier-Ferry was applied to flat and cylindrical shell-core systems [24] ; they presented

only one example with more complex geometry (a sphere) in [41] . 

In this work, we present a novel computational model for prediction of surface wrinkling on general curved shell-core

systems subjected to pressure. Our theory offers a basis for a fast and robust numerical setup that can give a quantitative

prediction of wrinkling patterns on curved shell-substrate systems. The theory is build upon three basic assumptions: ( i )

Because the outer layer is flexible and thin, the mechanical response of the shell-substrate system can be described by

the nonlinear shell theory of Kirchhoff-Love type; ( ii ) The response of the substrate can be modelled via linear Winkler-

type elastic foundation. A similar approach was used in studies by Zhao et al. [26] and Lagrange et al. [27] for cylindrical

systems; ( iii ) To lower the complexity of this highly nonlinear problem but still preserving the fundamental features of the

considered physical phenomena, we employ a model order reduction of the Kirchhoff-Love shell kinematics by assuming

that the displacements tangential to the shell’s surface can be neglected, because they are much smaller than the normal

displacements. The same idea was adopted by Stoop et al. [22] in their study. 

For the finite element discretization, we use quadrilateral finite element. Due to the requirement for the C 1 continuity of

the displacement across the mesh, we apply the discrete-Kirchhoff approach. We design the element with three degrees of

freedom per node, which are the normal displacement and two rotations of the shell normal, and apply the interpolations,

which partially fulfill the Kirchhoff-Love constraint (i.e., the deformed shell director remains normal to the deformed mid-

surface). The constraint is completely fulfilled at the nodes, unidirectionally fulfilled at the edges, and approximately fulfilled
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at the Gauss points. The resulting shell quadrilateral has similar interpolations as the discrete-Kirchhoff quadrilateral for the

plates, see e.g. Bohinc et al. [28,29] , except that now the shell’s curvature is taken into account. It should be noted that the

derived finite element is not a general purpose finite element for shells (on elastic foundation) but it is a special-purpose

finite element, designed for analysis of pressurized, curved shell-substrate systems. We name it DKQ-3 (as discrete-Kirchhoff

quadrilateral with three degrees of freedom per node). The DKQ-3 has some interesting features: when flat it has one rigid

body mode, but when curved it has zero rigid body modes. For this reason, the curved shell-substrate systems, such as

spheres, half-spheres, spheroids, etc. can be analyzed with DKQ-3 without applying displacement-like boundary conditions.

This resolves the problem of prescribed displacements in closed systems like spheres. Also, the second and the third nodal

degrees of freedom (i.e., the rotations) are just the derivatives of the displacement. This enables large rotations of the shell

to be naturally taken into account without any special treatment. It is also interesting to note that the present shell theory

needs to be formulated in the manner of classical shell works, e.g. [40] , resolving the displacement vector with respect to

the surface base vectors. Such representation, which allows for a straightforward neglecting of the tangential displacements,

is in contrast with the usual approach. Namely, it is common for a general shell theory, which constitutes a basis for a finite

element formulation, to resolve the displacement vector with respect to the fixed Cartesian frame, see e.g. [37,38,47] ; this

considerably simplifies its numerical implementation. 

We focus on wrinkling on spheres, spherical caps and spheroids. Note that our procedure is otherwise applicable to gen-

eral curved shapes under pressure. In order to compute the equilibrium path, the path-following method from Stani ́c et al.

[39] is applied. Because of the symmetries of the considered curved systems, each of them has clustered (multiple) stable

bifurcation points at the critical pressure level at which the system buckles into wrinkling pattern mode. However, when

these double curved surfaces are discretized by a random (yet fine) finite element mesh, the asymmetric imperfections

are inevitably incorporated as there exists no mesh that could fully preserve the symmetries of the considered surfaces.

Moreover, these imperfections dissipate clustered bifurcation points over a narrow region. This is just enough for the ap-

plied path-following procedure to pass the first bifurcation point without detecting it, because the stable bifurcation point

vanishes due to asymmetric imperfections if small enough solution steps are prescribed. We note that in contrast to other

numerical works, which all introduce small imperfections, either in the initial geometry or in the load, in order to perturb

the system to be able to perform the transition from the fundamental equilibrium path to the secondary one, our numerical

approach does not require such interventions. Very small imperfections, inevitably induced due to the mesh discretization,

are enough for the used path-following method to switch to the secondary equilibrium path (at least for the considered

double curved shells). After the first bifurcation point is passed, the solution is searched along the secondary branch. In

some (rare) cases, the critical points were found on the secondary branch, which, however, were not studied further. 

The rest of the paper is organized in the following way: in Section 2 , the geometrically nonlinear reduced-order

Kirchhoff-Love model for curved shell-substrate systems under external pressure is derived. In Section 3 , we derive the cor-

responding discrete-Kirchhoff quadrilateral. Section 4 contains a set of illustrative numerical examples and the conclusions

are drawn in Section 5 . 

2. Theoretical formulation 

2.1. Basic assumptions 

A thin elastic surface, which envelopes the soft core, will be modelled by the nonlinear Kirchhoff-Love (KL) shell theory.

This theory is based on the kinematic assumption that the material fiber of the shell, which is initially normal to the mid-

surface, remains straight and normal to the deformed mid-surface; thus, the effects of the transverse shear are neglected. It

follows from this assumption that kinematic expressions for the initial (i.e., undeformed) and deformed configurations have

the same structure. To distinguish between both configurations we mark the objects from the deformed configuration by a

symbol ̃  , and the objects from the undeformed configuration without it. 

We start the derivation of kinematic expressions by listing some fundamentals that are needed to structure the theory.

The shell S will be parametrized as 

x (θ1 , θ2 , θ3 ) := 0 x (θ
1 , θ2 ) + θ3 a 3 (θ

1 , θ2 ) , (1)

where ( θ1 , θ2 , θ3 ) is a triplet of curvilinear (contravariant) coordinates, 0 x is the parameterization of the shell’s mid-surface

M , and a 3 is the unit vector field, which is normal to M . Here, the coordinate θ3 measures the distance from M and is

constrained by θ3 ∈ [ −t / 2 , t / 2] , where t denotes the thickness of the shell ( t is constant in our case). The tangent space of

M at a point on T M 

can be defined by a set of vector fields 

a α(θ1 , θ2 ) := 

∂ 0 x (θ1 , θ2 ) 

∂θα
=: 0 x (θ

1 , θ2 ) , α , α ∈ { 1 , 2 } , (2)

which, together with 

a 3 (θ
1 , θ2 ) := 

a 1 (θ
1 , θ2 ) × a 2 (θ

1 , θ2 ) 

‖ a 1 (θ1 , θ2 ) × a 2 (θ1 , θ2 ) ‖ 

, (3)

constitute a local covariant basis { a 1 , a 2 , a 3 } on M . Note that here and in the rest of the paper we omit the functions’

arguments for brevity and adopt the standard notation in Greek letters for index values from {1, 2} and Latin letters for
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indices from {1, 2, 3}. Moreover, since a 3 is perpendicular to T M 

and of unit length, then 

a α · a 3 = 0 , a 3 , α ·a 3 = 0 , a 3 · a 3 = 1 and a 

3 = a 3 , (4) 

where the contravariant base vectors a 

i are defined by the relation a 

i · a j = δi 
j 
, and δi 

j 
is Kronecker delta simbol. A similar

local basis { g 1 , g 2 , g 3 } can be constituted in S by differentiating Eq. (1) , 

g α = a α + θ3 a 3 , α and g 3 = a 3 . (5) 

Given by the inner product of the basis vectors, the corresponding covariant elements g ij := g i · g j of the metric tensor g at a

point in the shell S are: 

g αβ = a αβ − 2 θ3 b αβ + (θ3 ) 2 c αβ, g α3 = 0 , g 33 = 1 , (6)

where a αβ , b αβ and c αβ represent the covariant elements of the first, second and third fundamental forms of the mid-

surface M , respectively: 

a αβ := a α · a β, b αβ := −a α · a 3 , β = −a β · a 3 , α = a 3 · a α, β , c αβ := a 3 , α ·a 3 , β . (7)

For the measure of strain, we use the Green-Lagrange strain tensor E := ( ̃ g − g ) / 2 , where ˜ g denotes the metric tensor

of the deformed shell configuration 

˜ S . As a consequence of the KL assumptions, the structure of all kinematic expressions

from above remain the same for deformed configuration, with addition of ˜ symbol on top of each object. Taking this into

account, we can write the Green-Lagrange strain tensor components as 

E αβ = εαβ + θ3 καβ + (θ3 ) 2 ραβ, and E i 3 = 0 , (8) 

where 

εαβ = 

1 

2 

(
˜ a αβ − a αβ

)
, καβ = −( ̃ b αβ − b αβ ) , ραβ = 

1 

2 

(
˜ c αβ − c αβ

)
. (9) 

Following the usual approach, see e.g. [37] , we neglect the effect of ραβ in subsequent derivations, and relate the first and

second fundamental forms corresponding to ˜ M to their counterparts from M via displacement vector field u , defined by 

u := 0 ̃  x − 0 x . (10) 

Rearrangement and partial differentiation of Eq. (10) w.r.t. to θα yields 

˜ a α = a α + u , α , (11) 

which leads to 

˜ a αβ = u , α ·u , β + u , α ·a β + a α · u , β + a α · a β, (12) 

˜ b αβ = 

˜ a 3 · a α, β + ̃

 a 3 · u , αβ . (13) 

With Eqs. (12) and (13) at hand, the membrane and bending strains from Eq. (9) become 

εαβ = 

1 

2 

( u , α ·u , β + u , α ·a β + a α · u , β ) , (14) 

καβ = −( ̃  a 3 · a α, β + ̃

 a 3 · u , αβ −b αβ ) . (15) 

One can notice that if u is developed in the co- or contravariant basis of T M 

, u = u αa α + u 3 a 3 or u = u αa 

α + u 3 a 

3 , respec-

tively (as needed), then 

˜ a 3 is the only term from the deformed configuration at this stage. 

2.2. Reduced kinematics 

By neglecting the tangential components of the displacement field u , such that u ≈ u 3 a 3 = u 3 a 

3 and Eq. (4) 4 , we can

write u 3 = u 3 and 

u ≈ u 3 a 3 . (16) 

Eqs. (14) and (15) thus reduce significantly, see [22] . 

Before we develop all the terms on the r.h.s. of expressions for the membrane and bending strains as functions of dis-

placement u 3 , we list some useful identities from differential geometry 

a 3 , α = −b 
γ
αa γ , b 

γ
αa γ β = b αβ, b 

γ
αb γβ = c αβ, (17)

a 1 × a 2 = 

√ 

a a 3 , a 2 × a 3 = 

√ 

a a 

1 , a 3 × a 1 = 

√ 

a a 

2 , (18) 

a = ‖ a 1 × a 2 ‖ 

2 = a 11 a 22 − (a 12 ) 
2 , a 

α = a αγ a γ , a αγ a γ β = δα
β (19)

a α, β = �
γ
αβ

a γ + b αβa 3 , �
γ
αβ

= a 

γ · a α, β = a 

γ · a β, α = −a α · a 

γ , β , (20) 

where �
γ
αβ

are the Christoffel symbols of the second kind. 
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Let us rearrange the membrane strains. We use Eqs. (4) and (17) to differentiate (16) and get the following relations 

u , α = −u 3 b 
γ
αa γ + u 3 , α a 3 , u , α ·u , β = (u 3 ) 

2 c αβ + u 3 , α u 3 , β , a α · u , β = −u 3 b αβ, (21)

which are then inserted in Eq. (14) in order to obtain the reduced version of membrane strains εαβ , 

εαβ = 

1 

2 

(
(u 3 ) 

2 c αβ + u 3 , α u 3 , β

)
− u 3 b αβ . (22)

In the same manner we express the reduced order of bending strains καβ in (15) . We employ Eqs. (18) 1 and (11) to

obtain √ 

˜ a ̃  a 3 = a 1 × a 2 + a 1 × u , 2 + u , 1 ×a 2 + u , 1 ×u , 2 . (23)

Each term on the r.h.s. of (23) can be written as, see (21) , 

a 1 × a 2 = 

√ 

a a 3 , a 1 × u , 2 = −√ 

a (u 3 , 2 a 

2 + u 3 b 
2 
2 a 3 ) , u , 1 ×a 2 = −√ 

a (u 3 , 1 a 

1 + u 3 b 
1 
1 a 3 ) , (24)

u , 1 ×u , 2 = 

√ 

a u 3 

(
(u 3 , 1 b 

2 
2 − u 3 , 2 b 

2 
1 ) a 

1 + (u 3 , 2 b 
1 
1 − u 3 , 1 b 

1 
2 ) a 

2 + u 3 (b 1 1 b 
2 
2 − b 2 1 b 

1 
2 ) a 3 

)
. (25)

Furthermore, 
√ 

˜ a can be expressed via Eqs. (19) 1 , (7) 1 , (11), (21) 3 in the following form 

˜ a = 

˜ a 11 ̃  a 22 − ( ̃  a 12 ) 
2 , (26)

where 

˜ a 11 = a 11 − 2 u 3 b 11 + (u 3 ) 
2 c 11 + (u 3 , 1 ) 

2 (27)

˜ a 22 = a 22 − 2 u 3 b 22 + (u 3 ) 
2 c 22 + (u 3 , 2 ) 

2 (28)

˜ a 12 = a 12 − 2 u 3 b 12 + (u 3 ) 
2 c 12 + u 3 , 1 u 3 , 2 . (29)

The term u , αβ in Eq. (15) is expanded with the help of identities (17) 1 and (20) as 

u , αβ = (−u 3 , β b 
γ
α − u 3 b 

γ
α, β −u 3 b 

λ
α�

γ
λβ

− u 3 , α b 
γ
β
) a γ + (u 3 , αβ −u 3 c αβ ) a 3 . (30)

Finally, one can employ Eqs. (23) –(30) to evaluate the dot products 

˜ a 3 · a α,β = 

√ 

a 

˜ a 

(̂ A �1 
αβ + ̂

 B �2 
αβ + ̂

 C b αβ

)
(31)

and 

˜ a 3 · u , αβ = 

√ 

a 

˜ a 

(̂ A (−u 3 ,βb 1 α − u 3 b 
1 
α,β − u 3 b 

ω 
α�1 

ωβ − u 3 ,αb 1 β ) 

+ ̂

 B (−u 3 ,βb 2 α − u 3 b 
2 
α,β − u 3 b 

ω 
α�2 

ωβ − u 3 ,αb 2 β ) + ̂

 C (−u 3 c αβ + u 3 ,αβ ) 
)
, (32)

where ̂ A = (−u 3 u 3 , 2 b 
2 
1 + u 3 u 3 , 1 b 

2 
2 − u 3 , 1 ) , (33)

̂ B = (−u 3 u 3 , 1 b 
1 
2 + u 3 u 3 , 2 b 

1 
1 − u 3 , 2 ) (34)

̂ C = (1 − u 3 b 
2 
2 − u 3 b 

1 
1 + (u 3 

)
2 b 1 1 b 

2 
2 − (u 3 

)
2 b 2 1 b 

1 
2 ) , (35)

necessary to express the bending strains καβ in (15) as functions of displacement u 3 . 

The expression for bending strains is quite complex. For comparison, let us write the expression for linear bending

strains, which is much simpler 

καβ = −u 3 , αβ + u 3 c αβ + u 3 , γ �
γ
αβ

. (36)

2.3. Potential energy 

The total potential energy functional for our system is 

Π(u 3 ) = 

∫ 
M 

(
0 W (εαβ ) + 1 W (καβ ) 

)
dA −

∫ 
M 

(
pu 3 − K s 

2 

(u 3 ) 
2 
)

dA, (37)

where 0 W and 1 W are the membrane and bending strain energy functions, respectively, p is surface pressure acting in the

direction of −a 3 , K s is the stiffness of area spring representing substrate reaction, and M denotes the undeformed shell’s

mid-surface, as before. Membrane forces and bending moments are defined as 

n αβ = 

∂ 0 W (εαβ ) 

∂εαβ
, m αβ = 

∂ 1 W (καβ ) 

∂καβ
. (38)
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Equilibrium of the mechanical system is sought through minimization of the potential energy functional Π . The necessary

condition for its minimum is 

δΠ = 

d 

dε 

[
Π(u 3 + εδu 3 ) 

]∣∣∣∣
ε=0 

= 0 , (39) 

where δΠ denotes the first variation of the potential energy, ε is a scalar parameter and δu 3 is kinematically admissible

variation of the displacement field. By applying formalism (39) in Eq. (37) one gets 

δΠ(u 3 , δu 3 ) = 

∫ 
M 

(δεαβn αβ + δκαβm αβ

)
dA −

∫ 
M 

(δu 3 p − δu 3 K s u 3 ) dA = 0 , (40)

where δεαβ and δκαβ are kinematically admissible variations of membrane and bending strains, respectively. 

2.4. Constitutive relations 

We will use the thin-shell version of the isotropic St. Venant-Kirchhoff hyperelastic strain energy function. This particular

strain energy function is appropriate for large displacements and small strains, which is the case for the problem under

consideration. The thin-shell version takes into account the plane stress assumption. It is defined as a sum of two parts

W = 0 W + 1 W, the first representing shell membrane deformation energy density and the second shell bending deformation

energy density. For the chosen shell strain energy function, the membrane forces and bending moments are 

n 

αβ = 

Et 

1 − ν2 
H 

αβγ δεαβ, m 

αβ = 

Et 3 

12 

(
1 − ν2 

)H 

αβγ δκαβ, (41) 

where E is the Young’s modulus, ν is the Poisson’s ratio and H 

αβγ δ are the components of the isotropic constitutive tensor,

H 

αβγ δ = νa αβa γ δ + 

1 

2 

(1 − ν) 
(
a αγ a βδ + a αδa βγ

)
. (42)

Let us use the Voigt notation for strains and stress resultants 

[ ε] = 

[
ε11 , ε22 , 2 ε12 

]
T , [ κ] = 

[
κ11 , κ22 , 2 κ12 

]
T , (43)

[ n ] = 

[
n 

11 , n 

22 , n 

12 
]

T , [ m ] = 

[
m 

11 , m 

22 , m 

12 
]

T . (44)

The relations between these vectors are n = 

Et 
1 −ν2 H ε and m = 

Et 3 

12(1 −ν2 ) 
H κ, where the constitutive tensor H is represented as,

see e.g. [37] , 

[ H ] = 

[ 

a 11 a 11 νa 11 a 22 + (1 − ν) a 12 a 12 a 11 a 12 

νa 11 a 22 + (1 − ν) a 12 a 12 a 22 a 22 a 22 a 12 

a 11 a 12 a 22 a 12 1 −ν
2 

a 11 a 22 + 

1+ ν
2 

a 12 a 12 

] 

. (45) 

With this notation at hand, we can rewrite the minimum of the potential energy (40) for the Kirchhoff-Love shell on elastic

foundation that is subjected to pressure p as 

δΠ(u 3 , δu 3 ) = 

∫ 
M 

Et 

1 − ν2 

(
δε · H ε + 

t 2 

12 

δκ · H κ
)
dA + 

∫ 
M 

δu 3 K s u 3 dA −
∫ 
M 

δu 3 pdA = 0 . (46)

where [ δε] = [ δε11 , δε22 , 2 δε12 ] 
T and [ δκ] = [ δκ11 , δκ22 , 2 δκ12 ] 

T . 

3. Reduced-order discrete-Kirchhoff quadrilateral 

3.1. Approximation of initial surface geometry 

Let the initial shell mid-surface M be discretized by N el non-overlapping quadrilateral finite elements with 4 nodes, such

that M ≈ ⋃ N el 
e =1 

M 

e . The domain M 

e (the initial geometry of the element) and the field of its normal are defined by the

following approximations 

0 x (ξ , η) = 

4 ∑ 

I=1 

N I (ξ , η) 0 x I , a 3 (ξ , η) = 

4 ∑ 

I=1 

N a (ξ , η) a 3 I . (47)

where 0 x I and a 3 I are coordinates and surface normal at node I , respectively, whereas ξ and η are the coordinates that are

interpreted as ξ = θ1 and η = θ2 over M e , and N I are bi-linear Lagrange interpolation functions defined over the bi-unit

square [ −1 , 1] × [ −1 , 1] , 

N 1 = 

1 

4 

(
1 − ξ

)(
1 − η

)
, N 2 = 

1 

4 

(
1 + ξ

)(
1 − η

)
, N 3 = 

1 

4 

(
1 + ξ

)(
1 + η

)
, N 4 = 

1 

4 

(
1 − ξ

)(
1 + η

)
. (48)

Interpolations (47) are used for approximation of geometric terms, which appear in expressions for εαβ and καβ (i.e., the

components of the first, second and third fundamental forms, etc.), over the element. 
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Fig. 1. (a) Nodal parameters for edges 12 and 43. (b) Nodal parameters for edges 23 and 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Interpolations of displacement and rotation fields 

In the rest of this section, we will use the notation w := u 3 to avoid complicated indexing. Moreover, we will approximate

u 3,1 with rotation −θ, and u 3,2 with rotation ψ . 

3.2.1. Interploations along element’s edges 

Let us first design interpolations along the four edges of the element; we will use the following notation: the first node

of the edge IJ is I and the second node is J . Let us start with IJ = 12 and IJ = 43 . For these two edges, we will consider

displacement w and rotation θ , see Fig. 1 a). We choose cubic interpolation for displacement and quadratic interpolation for

rotation along the edge 

w 

IJ = w I N I + w J N J + 

4 ∑ 

b=3 

ˆ w 

IJ 

b 
N̄ b , θ IJ = θI N I + θJ N J + 

ˆ θ IJ N̄ 3 , IJ ∈ { 12 , 43 } , (49)

where N I = (1 − ξ ) / 2 , N J = (1 + ξ ) / 2 are the interpolation functions (48) along the considered edges with η = −1 and η = 1 ,

respectively, and N̄ 3 = 1 − ξ 2 , N̄ 4 = ξ (1 − ξ 2 ) . Only two nodal displacements, w I , w J , and two nodal rotations, θ I , θ J , are the

acceptable parameters for our element in Eq. (49) . The other parameters in Eq. (49) are condensed out by enforcing the KL

normality hypothesis, which can be expressed as ∂ w 

IJ /∂ ξ + θ IJ = 0 . Setting the constant, linear and quadratic terms of the

normality constraint to zero, results in 

ˆ w 

IJ 
3 

= 

L 

8 

(θJ − θI ) , ˆ w 

IJ 
4 

= 

L 

4 

(
w J − w I 

L 
+ 

1 

2 

(θI + θJ ) 
)
, ˆ θ IJ = −6 

L 
ˆ w 

IJ 
4 
, (50)

where IJ ∈ {12, 43}. By plugging in the edge length of the bi-unit square, L = 2 , and Eq. (50) into (49) , we get a four-

parameter linked interpolations for displacement w and rotation θ along the edges IJ = 12 and IJ = 43 . 

For the two edges IJ = 23 and IJ = 14 , we will consider displacement w and rotation ψ , see Fig. 1 b. We choose the

following interpolations 

w 

IJ = w I N I + w J N J + 

4 ∑ 

b=3 

ˆ w 

IJ 

b 
¯̄N b , ψ 

IJ = ψ I N I + ψ J N J + 

ˆ ψ 

IJ ¯̄N 3 , IJ ∈ { 23 , 14 } , (51)

where N I = (1 − η) / 2 , N J = (1 + η) / 2 are the interpolation functions (48) along the considered edges with ξ = 1 and ξ = −1 ,

respectively, and 

¯̄N 3 = 1 − η2 , ¯̄N 4 = η(1 − η2 ) . By enforcing the KL normality hypothesis along the edges, which is ∂ w 

IJ /∂ η −
ψ 

IJ = 0 , we get 

ˆ w 

IJ 
3 

= 

L 

8 

(ψ I − ψ J ) , ˆ w 

IJ 
4 

= 

L 

4 

(
w J − w I 

L 
− 1 

2 

(ψ I + ψ J ) 
)
, ˆ ψ 

IJ = 

6 

L 
ˆ w 

IJ 
4 
, (52)

where IJ ∈ {23, 14}. Similarly as before, plugging Eq. (52) and L = 2 into (51) , yields linked interpolations for displacement w

and rotation ψ along the edges IJ = 23 and IJ = 14 . 

The above interpolations satisfy the KL normality constraint along each quadrilateral’s edge, but only in the direction of

the edge. However, at element’s nodes (at cross-sections of edges), the KL normality constraint is fully satisfied. 

3.2.2. Interpolations over the element 

Let us design interpolations over the element in such a way that they coincide at element’s edges with the expressions

given in Eqs. (49) –(52) . This is achieved if displacement and rotations are interpolated over the element as 

w = 

4 ∑ 

I=1 

N I w I + 

∑ 

IJ 

(
N IJ ˆ w 

IJ 
3 

+ M IJ ˆ w 

IJ 
4 

)
, (53)

θ = 

4 ∑ 

I=1 

N I θI + N 12 ̂
 θ12 + N 43 ̂

 θ43 , (54)

ψ = 

4 ∑ 

I=1 

N I ψ I + N 23 
ˆ ψ 

23 + N 14 
ˆ ψ 

14 , (55)
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Fig. 2. (a) Nodal parameters interpolated over the element. (b) Degrees of freedom at a node.. 

 

 

 

 

 

 

 

 

 

 

 

where IJ = { 12 , 23 , 43 , 14 } , the expressions for ˆ w 

IJ 
3 
, ˆ w 

IJ 
4 
, ˆ θ IJ , and 

ˆ ψ 

IJ are given in Eqs. (50) and (52) , and the interpolation

functions are 

N 12 = (1 − η − ξ 2 + ξ 2 η) / 2 , N 23 = (1 + ξ − η2 − ξη2 ) / 2 , 

N 43 = (1 + η − ξ 2 − ξ 2 η) / 2 , N 14 = (1 − ξ − η2 + ξη2 ) / 2 , (56) 

M 12 = (ξ − ξη − ξ 3 + ξ 3 η) / 2 , M 23 = (η + ξη − η3 − ξη3 ) / 2 , 

M 43 = (−ξ − ξη + ξ 3 + ξ 3 η) / 2 , M 14 = (−η + ξη + η3 − ξη3 ) / 2 . (57) 

The rotations θ and ψ in Eqs. (54) and (55) are close approximations of the displacement derivatives, because 

θ = 

{−∂ w/∂ ξ : at all nodes and edges IJ ∈ { 12 , 43 } , 
≈ −∂ w/∂ ξ : otherwise , 

(58) 

ψ = 

{
∂ w/∂ η : at all nodes and edges IJ ∈ { 23 , 14 } , 
≈ ∂ w/∂ η : otherwise , 

(59) 

which is illustrated in Fig. 2 (a). 

3.2.3. Transformation at nodes 

The nodal rotations, θI = −∂ w/∂ ξ | I and ψ I = ∂ w/∂ η | I we introduced above, have a local (i.e., element) character, and

cannot be used as degrees of freedom. They are not unique at the node of the mesh. In order to define nodal degrees of

freedom, we construct a local orthonormal basis at each node of the mesh. At node c such a basis is { e xc , e yc , a 3 c }, where

a 3 c is mid-surface normal at that point, see Fig. 2 (b). This basis is unique for all the elements meeting at node c , so that the

nodal degrees of freedom can be defined as: displacement w c , rotation around e xc , denoted a φxc = ∂ w/∂ y | c , and rotation

around e yc , denoted as φyc = −∂ w/∂ x | c . Here, x and y are Cartesian coordinates that span the tangential plane to the mid-

surface at c and have directions of e xc and e yc , respectively. 

The transformation between the element nodal rotations θ I , ψ I and the nodal degrees of freedom φxc , φyc is needed (for

I and c denoting the same node in space). It follows from the chain rule that 

∂w 

∂ ξ

∣∣∣∣
I 

= 

∂w 

∂x 

∣∣∣∣
c 

∂x 

∂ 0 x 

∣∣∣∣
c 

· ∂ 0 x 

∂ ξ

∣∣∣∣
I 

+ 

∂w 

∂y 

∣∣∣∣
c 

∂y 

∂ 0 x 

∣∣∣∣
c 

· ∂ 0 x 

∂ ξ

∣∣∣∣
I 

, [ ξ] = [ ξ , η] . (60) 

Because ∂ x/∂ 0 x | c = e xc , ∂ y/∂ 0 x | c = e yc , ∂ 0 x /∂ ξ | I = a 1 I , and ∂ 0 x /∂ η | I = a 2 I , one gets the following transformation rule [
θI 

ψ I 

]
= 

[
e xc · a 1 I −e yc · a 1 I 

−e xc · a 2 I e yc · a 2 I 

][
φy c 

φx c 

]
. (61) 

When the transformation (61) is inserted in Eqs. (53) –(55) , the element displacement w and rotations θ and ψ become

functions of the element’s degrees of freedom, which are w I , φx I and φy I , I ∈ { 1 , . . . , 4 } . With this, the interpolation of dis-

placement and its derivatives over the element is complete. It is now straightforward to express the membrane and bending

strains by the element’s degrees of freedom. 
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3.3. Assumed natural strain formulation 

The interpolations for displacement and rotations chosen above give zero transverse shear strains, γξ = γη = 0 , only at

the element nodes. The shear strain γξ = ∂ w/∂ ξ + θ is zero also along the edges IJ = 12 and IJ = 43 , and the shear strain

γη = ∂ w/∂ η − ψ is zero along the edges IJ = 23 and IJ = 14 . Thus, the transverse shear strains do not vanish throughout the

element. For this reason, we apply the assumed natural strain (ANS) concept for the transverse shear interpolation 

γ∗ = 

4 ∑ 

I=1 

N I γ I , [ γ] = [ γξ , γη] T , (62)

where γ∗ = 0 , because nodal transverse shear strains are zero. 

The variational framework for the ANS concept is the Hu-Washizu functional [44] . For the considered problem, it has the

following form for an element 

Π e 
HW 

(w, θ, ψ, γ∗, τ) = 

∫ 
M 

e 

(
Et 

2(1 − ν2 ) 

(
ε · H ε + 

t 2 

12 

κ · H κ

)
+ τ( γ∗ − γ ) 

)
dA 

e 

−
∫ 
M 

e 

(
pw − 1 

2 

K s (w ) 2 
)

dA 

e , (63)

where ε, κ, and γ are the membrane, bending and transverse shear strains, respectively, evaluated by w, θ and ψ from

(53) –(55) , and τ are transverse shear forces. Let us assume that τ is orthogonal to γ . In this case, the transverse shear

drops out, and the Hu-Washizu functional reduces to standard potential energy functional 

Π e (w, θ, ψ) = 

∫ 
M 

e 

(
Et 

2(1 − ν2 ) 

(
ε · H ε + 

t 2 

12 

κ · H κ

))
d A 

e −
∫ 
M 

e 

(
pw − 1 

2 

K s (w ) 2 
)

d A 

e . (64)

The above assumption implies that the variationally consistent shear forces are only those orthogonal to γ . 

The discretized form of the potential energy for the considered problem and its variation (related to equilibrium) can

now be written as 

Π = A 

N el 
e Π e , δΠ = A 

N el 
e δΠ e = 0 , (65)

where A is a finite element assembly operator. 

3.4. Variation and linearization 

When the interpolations (47) –(53) and transformation (49) are inserted into the potential energy functional (65) and the

variation of the latter is performed in order to find its minimum, a system of highly non-linear equations is obtained, with

the nodal degrees of freedom as the unknowns. In order to solve this system of equations by incremental-iterative Newton-

Raphson procedure (which is a part in the applied path-following method), the equations have to be consistently linearized.

We note that the element’s contribution to the system follows from the variation of (64) (and the assembly operator). We

omit the details of the variation of the element’s potential energy (64) and the linearization of the resulting set of the ele-

ment’s nonlinear equations. We note, however, that we performed the variation and linearization by applying Mathematica

[46] , its add-on AceGen [45] and that the derived finite element was implemented in the AceFEM [45] computer code. The

element’s integrals were computed by a 2 × 2 Gauss integration rule. 

4. Numerical examples 

In this section, we present the results of our numerical simulations on a full sphere, a hemisphere and a spheroid shell-

substrate composites. The outer shell surface was subjected to constant pressure, while the inner shell surface was supported

by a substrate, which was modelled as a linear Winkler-type elastic foundation. The modulus of elastic foundation K s was

calculated from Eq. (B.10) in Ref [27] ., which was originally developed for a cylinder. Note that a similar formula developed

for flat systems (see Eq. (B.11) in Ref. [27] ), and another formula developed for cylinders ( Eq. (11 ) in Ref. [26] ), give practically

the same result for K s for our set of geometric and material parameters (the relative difference is on average around 0.5 %).

All analyses were carried out by using a path-following method described in [39] . 

4.1. Membrane test 

Before presenting the results, let us show how the derived finite element describes pure linear membrane deformations.

Fig. 3 shows two variants of a 3 × 3 element mesh for a cylindrical patch, a symmetry preserving and a distorted one, both

subjected to the same load. The rotations were restrained along all edges of the patch. The results on a symmetry preserving

mesh in Fig. 3 a perfectly match the exact analytical solution u = 0 . 04 mm for radial displacement for all the nodes. On
3 
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Fig. 3. Mesh on a 40 ◦ cylindrical patch: (a) Symmetry preserving regular mesh, (b) Distorted mesh. (c) Convergence diagram for the distorted mesh: min. 

and max. displacement u 3 as a function of mesh size. The following parameters were used: radius of the patch R = 20 mm, length L = 20 mm, thickness 

t = 0 . 1 mm, Young’s modulus E = 10 6 MPa, Poisson ratio ν = 0 , spring constant K s = 0 and pressure load p = 10 MPa. 

Fig. 4. Mesh on a 30 ◦ × 30 ◦ spherical patch: (a) Regular mesh, (b) Distorted mesh. (c) Convergence diagram for the distorted mesh: min. and max. dis- 

placement u 3 as a function of mesh size. The following parameters were used: radius of the patch R = 20 mm, thickness t = 0 . 1 mm, Young modulus 

E = 10 6 MPa, Poisson ratio ν = 0 . 3 , spring constant K s = 0 and pressure load p = 10 MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the other hand, the distorted mesh in Fig. 3 b yields slightly different nodal displacements in the range u 3 ∈ [0.039929,

0.040083] mm, which is due to induced asymmetric imperfections. To illustrate the convergence of the solution on the

distorted mesh, we plot in Fig. 3 c four vertical bars (in blue color), corresponding to the difference between the maximal

and minimal displacement u 3 calculated on each of the four meshes. For comparison, a mesh with 24 × 24 elements yields

nodal displacements in the range u 3 ∈ [0.0399984, 0.040 0 019] mm. 

Because no symmetry preserving quadrilateral mesh exists for a spherical patch, both meshes in Fig. 4 introduce sym-

metry breaking imperfections. Therefore, we obtain slightly different nodal radial displacements in both cases, which are

very close to the analytical solution 0.014 mm, though. The two meshes (a) and (b) yield u 3 ∈ [0.013929, 0.013940] mm and

u 3 ∈ [0.013898, 0.013972] mm, respectively. Again, both rotations were restrained along the edges. A convergence plot for a

distorted mesh on the spherical patch is shown in Fig. 4 c. Similar to the cylindrical case the difference becomes smaller

as the mesh is refined. For comparison to the 3 × 3 mesh, a mesh with 24 × 24 elements yields nodal displacements in the

range u 3 ∈ [0.0139982, 0.0139997] mm. 

4.2. Spherical shell 

A spherical shell, with geometric and material properties given in the caption of Fig. 5 , was pressurized by an ex-

ternal radial pressure p . As shown in Fig. 5 , the pressure induces the change of the normal displacement and the sur-

face pattern. The normal displacement u 3 was traced at a node located at the center of (or the closest to) a generic

dimple. 

In the initial stage, where u 3 varies linearly with p , large solution increments were allowed. At some increment, several

negative pivots were found for the equilibrium tangent stiffness matrix at that load level. This was an indication that several

critical points in a cluster of stable bifurcation points (as generically illustrated in Fig. 6 a, see also e.g. [48] ) were passed.

Clustered bifurcation points are typical for discretized problems with multiple symmetries, see e.g. [48] . Hence, a step-back

to the previous equilibrium configuration was done and the analysis proceeded with smaller solution increments, which

ensured a smooth transition from the primary to the secondary equilibrium path, see Fig. 6 b. 

This way, the applied path-following procedure passed the first bifurcation point without detecting it, because the stable

bifurcation point vanished due to asymmetric imperfections induced by the mesh, see e.g. [49] . These imperfections are

clearly visible already on the first deformed configuration in Fig. 5 as very small non-homogeneity of normal displacement.
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Fig. 5. Development of the normal displacement field u 3 on a spherical shell as the pressure load p is increased. Geometrical and material parameters 

are as follows: radius R = 20 . 0 mm, thickness t = 0 . 8 mm, Young’s modulus E = 2 . 1 MPa, Poisson’s ratio ν = 0 . 49 , modulus of elastic foundation K s = 

0 . 1302 N/mm 

3 , and the number of elements in the mesh n = 148 512 . 

Fig. 6. Conceptualization of: (a) a cluster of stable bifurcation points for a symmetrical structure; (b) a primary and secondary equilibrium paths at first 

stable bifurcation point for a symmetrical structure without (solid black line) and with asymmetric imperfections (dashed red line). 

 

 

 

 

 

 

 

 

 

 

 

At the transition to the secondary path, the dimples were beginning to form; the critical pressure for this particular example

was p ≈ −238 kPa. With further increase in pressure, the depth of dimples increased and their arrangement remained the

same within the observed pressure interval. 

We stopped the analysis at p ≈ −265 kPa. At this point, we calculated the characteristic wavelength λ on fully developed

dimple pattern, using the Delaunay triangulation on the dimple centres, and found that λ = 6 . 868 ± 0 . 379 mm. For compar-

ison, an analytical formula (see Eq. (1 ) in Ref. [32] ) gives λ = 7 . 283 mm; a relative difference of approximately 5.7 %. The

number of dimples we counted in this simulation was 124. 

In addition to the sphere presented in Fig. 5 , we performed simulations on three other spherical examples with

the same mesh of 148,512 elements. In Fig. 7 we present their fully developed patterns. For thicknesses and mod-

uli of elastic foundations given in the caption of Fig. 7 , we obtain dimple patterns with characteristic wavelengths λ =
(3 . 471 , 5 . 165 , 6 . 868 , 8 . 667) mm and standard deviations (0.270, 0.323, 0.379, 0.481) mm, respectively. As expected, a thin-

ner shell with stiffer foundation exhibits a pattern with a shorter wavelength. The theoretical prediction, using the for-

mula from Eq. (1) in Ref. [32] , yields λ = (3 . 642 , 5 . 463 , 7 . 283 , 9 . 104) mm, which represents a (4.7, 5.4, 5.7, 4.8) % relative
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Fig. 7. Fully developed wrinkling patterns on spheres with different thicknesses, t = (0 . 4 , 0 . 6 , 0 . 8 , 1 . 0) mm, moduli of elastic foundation, K s = 

(0 . 2610 , 0 . 1738 , 0 . 1302 , 0 . 1039) N/mm 

3 , pressure loads p = −(492 . 0 , 323 . 5 , 261 . 8 , 214 . 7) kPa, and all with the same shell radius R = 20 . 0 mm, Young’s 

modulus E = 2 . 1 MPa and Poisson ratio ν = 0 . 49 . The number of dimples is N = (490 , 220 , 124 , 78) and the number of elements in the mesh is n = 148 512 

for all four examples. 

Fig. 8. Convergence and comparison diagrams for a spherical shell with t = 1 mm (material and geometric properties are the same as above). (a) Con- 

vergence of the shell’s deformation energy (sum of stretching and bending energy) as the number of elements (mesh density) is increased. All values 

of deformation energy are obtained at pressure load p = 215 kPa. (b) Six plots of the stretching energy versus pressure, showing the convergence as the 

number of elements is increased. (c) Stretching and bending energies obtained via finite element analysis with a fully nonlinear element (DKQ-3) and 

nonlinear-stretching-linear-bending element (DKQ-3LB). Dark yellow and blue color correspond to the nonlinear solution, whereas green and red corre- 

spond to the solution with linear bending. The number of elements in the mesh was n = 148 512 . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

difference as compared to the wavelength obtained from our numerical simulations. We note that in general simulations

become more difficult to perform with decreasing wavelength, because the number of meta-stable states grows rapidly (see

Refs. [32,33] for more details). In our simulations, however further possible critical points along the secondary equilibrium

path were not studied. 

To check the convergence of our numerical procedure, we carried out six simulations on each sample using increasingly

refined meshes, with 1260, 3721, 9152, 52,431, 89,855 and 148,512 finite elements. Fig. 8 a shows the convergence of the

deformation energy at p = 215 kPa as the mesh for the shell with thickness t = 1 mm from Fig. 7 is refined. The conver-

gence diagram shows that a fine mesh (i.e more than 50,0 0 0 elements) is needed for a sufficiently accurate result. Similar

convergence diagrams were obtained for all four shell configurations from Fig. 7 . 
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Another convergence diagram, which shows the stretching energy as a function of the pressure for all six tested mesh

densities, is given in Fig. 8 b. The results overlap in the sub-critical region, whereas the difference becomes evident only

after the loss of stability of the shell. Analogous to Fig. 8 a, the system responds as more compliant for coarser meshes, and

exhibits practically identical response for the finest two meshes in the post-critical region as well. 

In Fig. 8 c, we plot the stretching (i.e., the membrane) and bending parts of the shell’s deformation energy as a function

of pressure. It can be noticed, that the stretching energy increases in the initial stage of the simulation as the displacement

field is changing due to the (almost) homogeneous compression (i.e., the surface remains almost spherical). Simultane-

ously, the bending energy is still approximately equal to zero until the shell looses its stability around the critical pres-

sure. At this pressure, it is energetically more favourable for the shell to locally bend than to (almost homogeneously)

compress further. This can be seen from the diagrams on Fig. 8 c; the shell starts to wrinkle when a small unloading

(i.e., relaxation) occurs in the stretching energy (finer the mesh is, the larger unloading) along with a rapid increase in

bending energy. For the comparison of energies, we used two versions of the finite element derived above, which we de-

note as DKQ-3 and DKQ-3LB. The original DKQ-3 element (which we used for computations in all examples) keeps all

the nonlinear terms of our reduced model, and the DKQ-3LB element comprises nonlinear stretching and linear bend-

ing terms from Eq. (36) (the latter has the same structure as the one used in study [22] ). Curves plotted in Fig. 8 c in

dark yellow and green color represent the stretching energy whereas the blue and red represent the bending energy. The

difference between the results obtained with DKQ-3 and DKQ-3LB elements is distinguishable only after the loss of sta-

bility, as expected. These results diverge as the system is pushed further into the post-buckling regime with increasing

pressure. 

4.3. Hemispherical shell 

The material and geometric properties for the hemispherical shell presented in Fig. 9 are the same as given in the caption

of Fig. 5 for the full sphere. The shell boundary around the equator was free, since no displacement or rotation degrees of

freedom were restrained on the elements. 

Numerical simulation was performed in a similar manner as for the previous examples. We present its results in Fig. 9 ,

by showing a pressure-displacement diagram and a set of patterns calculated at different pressure levels to show the pattern

evolution. The node which was traced in the path-following algorithm was located at the center of the dimple closest to the

apex of the hemisphere. 
Fig. 9. Development of the normal displacement field u 3 on a hemispherical shell as the pressure p is increased. Geometrical and material parameters are 

the same as in the caption of Fig. 5 . The number of elements in the mesh was n = 94 212 . 
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Fig. 10. Fully developed wrinkling patterns on hemispheres with different thicknesses, t = (0 . 4 , 0 . 6 , 0 . 8 , 1 . 0) mm, moduli of elastic foundation, K s = 

(0 . 2610 , 0 . 1738 , 0 . 1302 , 0 . 1039) N/mm 

3 , pressure loads p = −(469 . 7 , 369 . 2 , 287 . 2 , 256 . 4) kPa, and all with the same shell radius R = 20 . 0 mm, Young’s 

modulus E = 2 . 1 MPa, and Poisson ratio ν = 0 . 49 . The number of dimples is N = (268 , 122 , 67 , 47) and the number of elements in the mesh is n = 94 212 

for all four examples.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be noticed that the sub-critical response of the shell is (slightly) nonlinear, as opposed to the full spherical shell

on Fig. 5 . This is because the initial deformation is not homogeneous due to the open boundary effect. Namely, the first

deformation mode which we observe around the equator at lower pressure values, resembles a formation of an elephant’s

foot (which is otherwise characteristic for an elasto-plastic buckling of thicker axisymmetrical shells, see e.g. [38,50] ). Still

in the sub-critical regime, slightly below the critical pressure, this mode starts to propagate towards the apex, forming

an axisymmetric deformation mode over the complete shell with concentric circular valleys. With further increase in the

pressure, these valleys evolve into dimples (and slightly rearrange) around the critical pressure p ≈ −238 kPa. It is interesting

to note that we find a snap-back in the pressure-displacement curve at the critical pressure, unlike in the case of a full

sphere. The mechanism of passing the first bifurcation point on the way to the secondary equilibrium path is still the same

as mentioned above. 

In addition to the hemisphere presented in Fig. 9 , we analyzed three other hemispherical shells with different geo-

metric and material properties. We used the same values of material and geometric parameters as in the cases of full

spheres (see the caption of Fig. 7 ), and obtained similar results, as expected. Their fully developed wrinkling patterns

are presented in Fig. 10 . The only major difference in comparison to the wrinkling patterns of full spheres was found

at the edges of hemispheres, where the arrangement of dimples is concentric with the equator (which affects the dis-

tribution of dimples) and the stiffness of the shell is smaller (which affects the size of the dimples). Thus, we consid-

ered only dimples away from the edge to calculate the characteristic wavelength. We calculated the following characteristic

wavelengths: λ = (3 . 4 88 , 5 . 14 9 , 6 . 988 , 8 . 552) mm with standard deviation (0.317, 0.425, 0.528, 0.817) mm, for thicknesses

t = (0 . 4 , 0 . 6 , 0 . 8 , 1 . 0) mm, respectively. As the theoretical prediction is the same as before (because we considered the same

geometric and material properties), we got a (4.2, 5.7, 4.1, 6.1) % relative difference as compared to the wavelength obtained

from our numerical analysis. 

4.4. Spheroidal shell 

We analyzed three different spheroidal shells with the principal axis ratios of b/a = (0 . 7 , 1 . 1 , 2 . 0) and c/a = 1 . One

axis was held fixed at a = 20 mm. Each shell was simulated four times, every time using a different thickness, t =
(0 . 4 , 0 . 6 , 0 . 8 , 1 . 0) mm. The modulus of elastic foundation K s was calculated, as before, from Eq. (B.10) in Ref. [27] , for each

configuration. 

The results of our simulations shown in Fig. 11 illustrate the wrinkling pattern dependance on the shell thickness, sub-

strate rigidity and (variable) curvature of the system. With respect to varying thickness and substrate rigidity, simulations

yield qualitatively the same results as in the cases of spheres and hemispheres, in which larger shell thickness and lower

substrate rigidity result in patterns with longer wavelengths. For the principal axes ratio b/a = 0 . 7 , shown in the bottom

row of Fig. 11 , we find dimples across the whole surface in each sample – similar to what we found on spheres. As demon-

strated in the first row of Fig. 12 , they are formed first at the poles since the flexural rigidity is the smallest there, and then

spread with increasing pressure towards the equator until the surface is fully covered. 

In contrast, different modes are obtained across each surface for b/a = 1 . 1 and b/a = 2 . 0 in Fig. 11 , as expected from the

non-constant Gaussian curvature of the spheroid. The first example in the middle row exhibits a mode mixed of dimples

and creases. The creases are formed around the equator of the spheroid from small dents which appear there first (in the

region with the smallest rigidity) and grow with increase in pressure into grooves oriented perpendicular to the equator, as

shown in the second row of Fig. 12 . In this particular case, the spheroidal caps (regions around the poles) are covered by

dimples later in the simulation. The remaining three shells in the middle row show smooth and unbuckled caps since the

flexural rigidity of the shell (due to curvature, thickness and substrate rigidity) is there large enough to suppress the local

snapping of the shell at that pressure load. We assume that dimples would appear on these caps as well if the simulation

would converge further. 

Note that similar observations on spheroids were reported in studies by Yin et al. [30,31] using Abaqus and simplified

analytical models. 
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Fig. 11. Wrinkling on spheroids with principal axes ratios b/a = (0 . 7 , 1 . 1 , 2 . 0) and thicknesses t = (0 . 4 , 0 . 6 , 0 . 8 , 1 . 0) mm. The modulus of elastic foundation 

is the same for all three shells in each column, K s = (0 . 0534 , 0 . 0355 , 0 . 0265 , 0 . 0211) N/mm 

3 . 

Fig. 12. Development of the pattern on two spheroids as the pressure p is increased. Upper row: principal axes ratio b/a = 0 . 7 , thickness t = 0 . 8 mm, 

K s = 0 . 0265 N/mm 

3 . Lower row: principal axes ratio b/a = 1 . 1 , thickness t = 0 . 8 mm, K s = 0 . 0265 N/mm 

3 . The snap-shots of both spheroids are not taken 

at the same pressure levels. 

 

 

 

5. Conclusion 

We derived a finite element formulation for quantitative prediction of surface wrinkling of pressurized elastic shells

attached to compliant substrates. Our theory is build on three basic assumptions which involve the Kirchhoff-Love shell

kinematics, the approximation of the substrate response by a Winkler foundation and a model order reduction of the dis-

placement field by neglecting the tangential displacements. 
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Two types of finite elements were formulated. The DKQ-3 element which keeps all the nonlinear terms of our reduced

model and the DKQ-3LB element which comprises nonlinear stretching and linear bending terms. A comparison between

both types of elements shows that the difference is evident in the post-buckling regime, where the results diverge with

increasing pressure. It should also be mentioned that an advanced path-following method [39] was employed in our com-

putations and that our numerical approach did not require any perturbations (either in the initial geometry or in the load)

to incite the transition from the fundamental equilibrium path to the secondary one for double curved shells, due to the

inherent asymmetric imperfections in the mesh. 

Numerical simulations using the DKQ-3 element on full spheres, hemispheres and spheroids show a very good quan-

titative agreement with theoretical predictions and experiments on wavelength as well as the qualitative depiction of the

pattern evolution (see e.g. [30,32] ). Nevertheless, we obtain characteristically higher pressure values in our calculations as

compared to experiments from Ref. [32] . We attribute this difference to the blind use of the foundation stiffness formula

(which otherwise contains the material parameters of both, the shell and the solid elastic foundation) which is originally

developed for cylinders and as such, not tailored for our specific problems. Moreover, it is evident from the available lit-

erature that the exact expression for the spring stiffness of the Winkler type foundation still remains an open problem for

general shapes of shells. Alternatively, the DKQ-3 finite element could be used in combination with a 3D solid finite element

(also with appropriate kinematic reduction and incompatible modes to account for near incompressibility of the substrate)

to obtain a good match also for pressure. But the obvious drawback of this idea lies in the fact that several layers of solid

elements would have to be included across the thickness of the substrate, which would increase the computational time

considerably. 

Overall, we can conclude that the proposed computational model provides a sound basis for a robust nonlinear finite

element formulation that is worth developing further in order to study wrinkling of thin shells attached to elastic substrates.
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