
Chapter 20
A Shell Finite Element Model for Superelasticity
of Shape Memory Alloys

Luka Porenta, Boštjan Brank, Jaka Dujc, Miha Brojan, and Jaka Tušek

Abstract A finite element formulation for the analysis of large strains of thin-
walled shape memory alloys is briefly presented. For the shell model we use a
seven-kinematic-parameter model for large deformations and rotations, which takes
into account the through-the-thickness stretch and can directly incorporate a fully
3D inelastic constitutive equations. As for the constitutive model, we use a large
strain isotropic formulation that is based on the multiplicative decomposition of
the deformation gradient into the elastic and the transformation part and uses the
transformation deformation tensor as an internal variable. Numerical examples are
presented to illustrate the approach.
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20.1 Introduction

Shape memory alloys (SMAs) are used for numerous applications (see for example
Jani et al, 2014, for a recent review), especially in medicine, where the Ni-Ti alloy is
used for stents, bone implants and surgical tools, see for example Brojan et al (2008);
Petrini and Migliavacca (2011), in robotics, where SMAs are used as actuators,
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see e.g. Coral et al (2012)), and aeronautics, where SMAs are used for vibration
damping, seals, deployment mechanisms and morphing wings, see e.g. McDonald
Schetky (1991); Hartl et al (2009); Sofla et al (2010). Applications in energy and
process engineering are also under development, e.g. in thermal engineering for
heat engines and for elastocaloric cooling technology, see e.g. Kaneko and Enomoto
(2011); VHK and ARMINES (2016); Tušek et al (2016).

Shape memory alloys have two important properties:

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47491-1_20&domain=pdf
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When a SMA in the M phase is subjected to mechanical loading, it deforms and
a detwinning process of martensite variants occurs. At the macroscopic scale, this
is a change of shape, while at the micro-scale, martensite variants are oriented in
a more preferable way. During unloading the martensite variants do not change,
therefore pseudo-plastic deformations are present at zero load. At this stage, shape
recovery can be achieved by subjecting the SMA material to a temperature above
the austenitic transformation finish temperature (Af ), where only A phase is stable.
During the temperature rise, a phase transformation from M to A begins at the
austenitic transformation start temperature (As) and is completed at Af . On the
other hand, cooling of SMA causes martensitic transformation with formation of
self-accommodated martensite variants. The transformation begins at martensitic
transformation start temperature (Ms) and ends at martensitic transformation finish
temperature (Mf ). In contrast to heating, where a shape recovery occurs, cooling of
SMA to its initial temperature does not cause any change in shape. It is worth noting
that shape recovery is only possible up to a certain degree of deformation.

i) the ability to remember its original shape when a deformed SMA part is subjected
to a high temperature (called the shape memory effect) and

ii) the ability to withstand large strains (up to 8%) without permanent plastic defor-
mation (known as superelasticity), see Fig. 20.1 (left).
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Fig. 20.1. Left: shape memory effect and superelasticity. Right: phase diagram.

        Both properties are attributed to the fact that SMAs are found in two different 

phases, Fig. 1 (right). The high temperature parent phase is called austenite or 

austenitic phase (A)  and  the  low  temperature  product  phase  is  called  martensit  or  

martensitic phase (M). The crystal structure of A is highly symmetric, which is why 

it can be only in one variant. On the other hand, M can be found in a large number 

of variants due to the lower symmetry of its crystal structure. Twinned or self 

accommodated martensite (Mt), which is stable at low stress state, occurs in differ-

ent variants. At a stress state higher than the critical, a process of detwinning starts, 

which results in detwinned (or stress induced) martensite (Md), i.e. the variant with 

the preferable orientation for a given stress state. In the phase diagram in Fig.1 

(right), areas with stable crystal lattices and transformation regions are shown 

schematically.
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a large deformation. During unloading an endothermic reverse martensite transfor-
mation from martensite to austenite takes place and the deformation vanishes. The
mechanism is not elastic because a transformation (change of the crystal lattice) takes
place. Depending on the strain rate and heat exchange between the SMAmaterial and
the environment, the material may heat up or cool down during the transformation.

A number of 3DSMAmaterial models were proposed. For implementationwithin
the framework of the finite element (FE) method, macroscale phenomenological
SMA models are a preferable choice. These models differ in various aspects, but
the biggest difference is whether they are designed to solve small strain or large
strain problems. The large strain models assume a multiplicative decomposition of
the deformation gradient. One of the first large strain SMA models was developed
by Auricchio and Taylor (1997) and numerically implemented in Auricchio (2001).
Stupkiewicz and Petryk (2013) showed how to reformulate a small strain model for
the finite strain regime, for superelasticity with tension-compression asymmetry and
anisotropy. In Reese and Christ (2008) the deformation gradient is decomposed into
elastic and transformation parts and the latter is further divided into a recoverable
and a plastic part.

In this work, we apply a version of the large strain SMA model proposed in
Arghavani et al (2011); Souza et al (1998); Evangelista et al (2010). The model
can predict the superelastic response and the shape memory effect of polycrystalline
SMA. It assumes isothermal transformations and neglects the tension-compression
asymmetry as well as functional fatigue due to cyclic loading. In the framework of
the finite element method, the 3D SMA material models are usually incorporated
into the 3D solid finite elements. A FE implementation of an SMAmodel in a plate or
shell finite element formulation is very rare. One of the reasons is that the standard
shell theories of Kirchhoff and Reissner-Mindlin type cannot directly include 3D
constitutive models because the plane stress constraint has to be enforced (and this
is not a trivial task for an inelastic model, see e.g. Dujc and Brank (2012)). There
are, however, the 3D-shell finite elements and the solid-shell finite elements, which
are designed in such a way that they can directly use 3D constitutive equations
without modification, see for example Brank et al (2002); Brank (2005); Brank
et al (2008). In this work we rely on a 3D shell model proposed in Brank (2005).
Our numerical formulation, which is presented below, can be used to simulate
the nonlinear behaviour (due to mechanical loading) of (very) thin-walled shape
memory alloys. They can undergo large deformations, large rotations (the formulation
described in Brank and Ibrahimbegovic (2001); Ibrahimbegovic et al (2001) is used)
and large strains.

20.2 Constitutive Model for SMA

In this section we revisit the 3D constitutive model for SMA that was originally
developed by Souza et al (1998) for small strains and later extended to finite strains
by Evangelista et al (2010); Arghavani et al (2011). Similar to the finite strain

Superelasticity (also called pseudoelasticity) is exhibited for a temperature above
Af , where the loading/unloading response is characterised by a nonlinear behaviour
with hysteresis. During loading, a stress-induced martensite is formed during the
exothermic martensite transformation. At the macroscopic level, this is observed as
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plasticity (see e.g. Ibrahimbegovic, 2009), a multiplicative decomposition of the
deformation gradient into elastic and transformation parts is postulated:

F = Fe F t (20.1)

With Eq. (20.1), the initial (i.e. undeformed), intermediate and current (i.e. deformed)
configurations are introduced. In this work, the total Lagrangian formulation is used
to describe large deformations of a shell, which requires the derivation of constitutive
equations with respect to the initial configuration. To achieve this goal, however, we
also use the tensors defined at the intermediate configuration. One such tensor is
Ce = FT

e Fe, while Ct = FT
t F t is defined at the initial configuration. The Cauchy-

Green deformation tensor and the Green-Lagrange strain tensor are:

C = FTF = FT
t CeF t, E =

1
2
(C −1) (20.2)

respectively, where 1 is the unit tensor. The velocity gradient tensor L = �F F–1 and
its symmetric part (i.e. rate of deformation) d = 1

2 (L + LT) are also used. The dot
stands for the (pseudo-)time derivative. The relation between d and the strain rate �E
is:

�E =FT dF (20.3)

According to experimental observations, the transformation in SMA is (almost)
isochronic, which is expressed by det(F t ) = 1 that yields tr(dt ) = 0.

The Helmholtz free energy ψ must depend on Fe only through Ce in order to
satisfy material objectivity. It is assumed that ψ depends also on Ct or yet the
transformation strain tensor

Et =
1
2
(Ct −1) (20.4)

temperature T , and that it can be additively decomposed into elastic part ψe and
transformation part ψt :

ψ = ψ(Ce,Et,T) = ψe(Ce)+ψt (Et,T) (20.5)

We assume material isotropy and choose a neo-Hooke type of hyperelastic strain
energy function:

ψe(Ce) = 1
2
μ (I1−3− log(I3))+ 1

4
λ (I3−1− log(I3)) (20.6)

where μ and λ are Lamé’s coefficients, and I1 and I3 are the first and third invariants
of Ce, respectively. It can be shown that these invariants equal the first and third
invariants of CC–1

t , which enables writing the strain energy function (20.6) in terms
of tensors from the initial configuration, i.e. ψe(Ce) = ψ̃e(C,Ct ). The transformation
part of free energy is chosen as (after Arghavani et al, 2011; Souza et al, 1998):

ψt (Et,T) = τM (T) ‖Et ‖+ 1
2

h ‖Et ‖2+I (‖Et ‖) (20.7)
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Here, τM (T) = β 〈T −T0〉 provides temperature dependency of material response, h,
β and T0 are the material parameters of the SMA model, 〈·〉 are Macaulay brackets
and ‖·‖ is standard tensor norm. In Eq. (20.7), a step function

I (‖Et ‖) =
{
0 ‖Et ‖ ≤ εL
∞ otherwise

(20.8)

is introduced in order to enable a (computational) enforcement of the limit of trans-
formation strains εL . This is another material parameter that can be obtained experi-
mentally from the uniaxial test as the absolute value of the maximum transformation
strain.

TheClausius-Duhem inequality form of the second law of thermodynamics states:

D = S :
1
2

C −( 
ψ+η 
T) ≥ 0 (20.9)

where S is the second Piola-Kirchoff stress tensor and η is entropy. Substituting
(20.5) into (20.9), we obtain:

D = S :
1
2

�C − ∂ψe
∂Ce

: �Ce︸�������������������︷︷�������������������︸
1

− ∂ψt
∂Et

: �Et︸�������︷︷�������︸
2

−∂ψt
∂T

: 
T −η 
T ≥ 0 (20.10)

It can be shown that 1 can be expanded as:(
S−2F–1

t

∂ψe
∂Ce

F–T
t

)
:
1
2

C +2Ce

∂ψe
∂Ce

: Lt (20.11)

where Lt = �F t F
–1
t . For an elastic case with no change in transformation and tem-

perature, the expression for the stress tensor follows from (20.10) and (20.11) as:

D = 0, �Et = Lt = 0, 
T = 0 ⇒ S = 2F–1
t

∂ψe
∂Ce

F–T
t = 2

∂ψ̃e
∂C

(20.12)

For a case of a temperature change with no change in transformation, the expression
for entropy is obtained from (20.10) as:

D = 0, �Et = Lt = 0 ⇒ η = −∂ψt
∂T

(20.13)

It is assumed that the relations (20.12) and (20.13) are also valid in the case of
transformation, which is the only case that still has to be considered. To this end, it
can be shown that the derivatives in 2 can be expressed as:

∂ψt
∂Et

= X = hEt + (τM (T)+γ) N (20.14)
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where
N =

Et

‖Et ‖
is a normalized transformation tensor, and

γ =

{
≥ 0 ‖Et ‖ = εL
0 otherwise

(20.15)

is a penalty-like parameter that results from sub-differential of the indicator function

∂I (‖Et ‖)
∂Et

= γN .

Using equations (20.12), (20.13) and (20.14), the dissipation at the transformation
case is obtained from (20.10) as:

D t = 2Ce
∂ψe
∂Ce︸�����︷︷�����︸
P

: Lt −X : 
Et ≥ 0 (20.16)

Some mathematical manipulations and (20.3) yield the equality X : 
Et = F X F T :
dt . Moreover, a decomposition of Lt into a symmetric and a skew-symmetric parts,
dt and wt , respectively, leads to equality P : Lt = P : dt . By further using the notation
K = Ft X F T

t and , where K plays a role of the back-stress tensor, the
inequality of the dissipation at transformation can be rewritten as:

It can be shown by some mathematical manipulations that Y , which plays the role
of an effective stress tensor, can be expressed in terms of tensors defined at initial
configuration as:

Y = CS−CtX (20.18)

= P −KZ

D t = : dt ≥ 0 (20.17)Z

By choosing a transformation function f ( ) ≤ 0 and assuming that the transfor-
mation case corresponds to the stress state giving f ( ) = 0, the evolution equation
for the transformation case can be obtained. We postulate that among all admissi-
ble states of transformation, we choose the one that renders maximum dissipation
D t or yet minimum of −D t . Recasting the original problem into the unconstrained
minimization problem can be done by using the Lagrange multiplier method and by
defining the Lagrange function as:

L ( , 
ζ) = −D t ( )+ 
ζ f ( ) (20.19)

where 
ζ is Lagrangemultiplier. In order to findminimum ofL ( , 
ζ), the stationarity,
primal feasibility, dual feasibility and complementary slackness conditions (also
known as Kuhn-Tucker conditions and loading/unloading conditions) must hold:

Z
Z

Z Z Z

Z

t t
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which can be replaced (in a consistent manner) by another evolution equation,
which is more suitable for numerical implementation based on the total Lagrangian
formulation:

(20.24)

This concludes a short derivation of the SMA material model used in this work.
The equations that define the above SMA large strain constitutive model are: the
chosen Helmholtz free energy function defined by (20.5), (20.6) and (20.7); the
stress tensors that can be computed by (20.12), (20.14) and (20.18); the transforma-
tion function (20.22); the loading/unloading conditions (20.20); and the evolution
equation (20.24). We will omit discussing its numerical implementation.

20.3 Seven-parameter Shell Model

In this section, we briefly present a 3D-shell model that can incorporate a 3D consti-
tutive model without a modification. Let the position vector to the material point of
the initial shell configuration be defined as:

ϕ(ξ1,ξ2,ξ3) = ϕ0(ξ1,ξ2) + ξ3A(ξ1,ξ2), ‖A‖ = 1 (20.25)

where ξ1 and ξ2 are curvilinear coordinates that parameterize the shell mid-surface
A , ξ3 ∈ [−h

2 ,
h
2 ] is a straight through-the-thickness coordinate, h is the initial shell

thickness and A is the shell director vector. In what follows, we will omit showing

∂L ( , 
ζ)
∂

= 0, f ( ) ≤ 0, 
ζ ≥ 0, 
ζ f ( ) = 0 (20.20)

From the stationarity condition (20.20)1, the evolution equation for the rate of trans-
formation deformation dt is obtained as:

−dt + 
ζ ∂ f ( )
∂

= 0 ⇒ dt = 
ζ ∂ f ( )
∂

(20.21)

In thisworkwe choose the following transformation function (according toArghavani
et al, 2011; Souza et al, 1998), which resembles classical yield functions for metals:

f ( ) =
55 D55−R (20.22)

where D is the deviatoric part of , and R is elastic region radius, which is another
parameter of the material model that has to be evaluated experimentally. Finally,
combining (20.21) and (20.22) yields the following form of the evolution equation:

dt = 
ζ
D55 D55 (20.23)

Z
Z

Z Z

Z
Z

Z
Z

Z Z

Z Z

Z
Z


Ct = 2 
ζ YD
Ct

YD:YDT
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functions and functional dependency on the convective coordinates we introduced
above for the sake of brevity. The position vector to thematerial point of the deformed
shell configuration is assumed as:

ϕ̄ = ϕ0+ u+ (ξ3λ+ (ξ3) 2q) a, ‖a‖ = 1 (20.26)

where u is the mid-surface displacement vector, a is the rotated shell director that
preserves the original unit length and the parameters λ and q define a constant
and linear through-the-thickness stretching, respectively. The rotation of A into a is
described by a singularity-free formulation that uses two large rotation parameters,
i.e., a = a(θ1,θ2) ; we refer to e.g. Brank and Ibrahimbegovic (2001); Ibrahimbegovic
et al (2001) for details. Equation (20.26) introduces seven kinematic parameters of
the adopted shell model, which can be collected in a vector as Φ = {u,θ1,θ2,λ,q}.

The components of the Green-Lagrange strain tensor can be defined with respect
to the above introduced curvilinear coordinates as:

E = Ei jG
i ⊗G j (20.27)

where Gi is the contravariant base vector defined as Gi ·Gk = δ
i
k
. The covariant base

vector is given as:

Gk =
∂ϕ

∂ξk
(20.28)

and δij is the Kronecker delta symbol. The strains Ei j are polynomials up to the fourth
order with respect to ξ3. In this work, we neglect the terms of orders three and four
because, as our numerical experiments show, they have a negligible influence on the
results. On the other hand, it is important that all strains have non-zero terms of order
one and two. This allows the implementation of a fully 3D constitutive equations
without modelling errors, which is not possible with many other shell models due to
the inherent 2D character of the description of the shell kinematics.

The virtual work equation (i.e. the weak form of the equilibrium equations) is the
starting point for finite element discretization. It can be written as:

G(δΦ,Φ,Ct ) =
∫
A

h/2∫
−h/2
δE(δΦ,Φ) : S(Φ,Ct )dξ3dA

︸��������������������������������������������︷︷��������������������������������������������︸
Gint (δΦ,Φ,C t )

−Gext (δΦ) = 0 (20.29)

where Gint is the virtual work of the internal forces, Gext is virtual work of the
external forces acting on the shell, δE is variation of the strain tensor field that can
be obtained as

δE =
d
dε

E(Φ+ εδΦ) |ε=0,
where ε is a scalar parameter, and δΦ represents the variation of the fields of seven
kinematic parameters of the model. It is worth noting that the 2nd Piola-Kirchhoff
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stress tensor field depends on shell kinematics as well as on the internal variable of
the above described SMA constitutive model, which is Ct . The linearization of Eq.
(20.29) yields:

Lin[G] = G+ ΔG (20.30)

where

ΔG =
∫
A

h/2∫
−h/2

[S : ΔδE + δE : CΔE]dξ3dA (20.31)

Here,
ΔδE =

d
dε
δE(δΦ,Φ+ ε ΔΦ) |ε=0

contributes to the stiffness due to geometric effects, and

C =
∂S

∂E

is a consistent material operator, which is the fourth order tensor.
After the introduction of discretization and interpolation in the framework of the

finite element method, Eq. (20.29) yields a system of highly nonlinear equations (due
to the arbitrariness of δΦ), where the unknowns are kinematic parameters at nodes
and internal variables at Gauss integration points. The solution of such a system
is based on an operator-split technology, which is applied within an incremental-
iterative Newton-Raphson solution method. Namely, at each iteration the computa-
tion of the Gauss point internal variable Ct (and consequently the computation of the
Gauss point stresses S and the consistent material tangent operator C) is split from
the computation of the nodal kinematic parameters. This is achieved by applying
two sequential procedures, where the results of the first procedure are immediately
used in the second procedure. Namely, the constitutive equations are first enforced
at the integration points by updating the internal variables of the constitutive model.
This local update is followed by the solution of the system of equations for an update
of nodal kinematic parameters using the consistent tangent stiffness matrix resulting
from (20.31).

The numerical examples in the next section are computed using a four node
element with the assumed natural strain treatment of the transverse shear strains
and through-the-thickness strains in order to avoid transverse shear and thickness
lockings. The element has four integration points over the mid-surface and three
through-the-thickness integration points, all of which are of the Gaussian type. In
order to facilitate the implementation of the SMA constitutive model described in
the previous section, a local Cartesian frame is introduced at each integration point.
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20.4 Numerical Examples

The material and shell models described above were implemented into the finite
element code using AceFEM (Korelc and Wriggers, 2016) by using a generator of
the finite element code AceGen, see e.g. Korelc and Stupkiewicz (2014); Hudobivnik
and Korelc (2016).

Three examples are presented below. The first and the second example show that
our results are in in good agreement with the reference results presented in Arghavani
et al (2011). The third example is somehowmore demanding and illustrates the ability
of the derived formulation to predict a superelastic response of a thin-walled curved
structure. The material parameters typical for NiTi are applied for all considered
examples:

E = 51700MPa, ν = 0.3, h = 750MPa, R = 140MPa
εL = 0.075, β = 5.6MPa/◦C, T0 = −25 ◦C

(20.32)

To obtain the superelastic response, the ambient temperature T is set to 37◦C. The
following figures show the components of the second Piola-Kirchhoff stress tensor
and the components of the Green-Lagrange strain tensor.

20.4.1 Square Wall Under Uniaxial Loading

A square wall with an edge length of a = 10 mm and a thickness of t = 0.01 mm
is subjected to uniaxial tension and compression. The mesh (5x5 elements), the
boundary conditions that allow a homogeneous uniaxial stress state over the wall
and the load are shown in Fig. 20.2. The load is q1 = λq and q2 = 0, where q = 14
N/mm and λ is the load multiplier. Loading and unloading in tension was applied
first, followed by loading and unloading in compression. Figure 20.3 shows computed
uniaxial superelastic response at a Gauss point. Our results (almost) exactly match
the results from reference Arghavani et al (2011). The reason for a very small
discrepancy at large load levels is the use of Saint-Venant Kirchhoff strain energy
function in Arghavani et al (2011), while our choice is the Neo-Hookean strain
energy function.

Fig. 20.2 Square wall: bound-
ary and loading conditions.
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Fig. 20.3 Square wall: su-
perelastic response at a Gauss
point for uniaxial loading.

20.4.2 Square Wall Under Biaxial Loading

Geometry, boundary conditions (which allow a homogenous stress state over the
wall) and mesh for this example remain the same as for the previous one, see Fig.
20.2. However, the load is now q1 = λ1q and q2 = λ2q where q = 7 N/mm, and λ1
and λ2 are load multipliers. The load is therefore non-proportional, with F1 = q1a
and F2 = q2a changing in a butterfly-like pattern as shown in Fig. 20.4. The loading
was applied in five steps:

(i) λ1 and λ2 increase from 0 to 1,
(ii) λ1 decreases to −1 at λ2 = 1,
(iii) λ1 increases to 1 and λ2 decreses to −1,
(iv) λ1 decreases to −1 at λ2 = 1, and
(v) λ1 and λ2 go to 0.

The curve in Fig. 20.5 explains how the relation between the in-plane normal strains
is changing during the loading. The agreement with the solution found in Arghavani

Fig. 20.4 Square wall: non-
proportional loading path.

−
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Fig. 20.5 Square wall: re-
lation between the in-plane
normal strains at a Gauss
point.

et al (2011) is very good. We would like to point out that our load application was
different from the one in Arghavani et al (2011). In our case, themeshwith edge loads
was considered, while in Arghavani et al (2011) a single Gauss-point algorithm was
tested under a butterfly-like stress control (with missing details how it was applied
for a strain-driven update algorithm). This is the reason for a difference between our
results and the reference results in Fig. 20.6, which shows the relation between the
in-plane normal stresses during loading. Part of the difference may also be due to
the use of different strain energy functions.

It is worth noting that for the first two examples the plane stress condition is
completely reproduced by the derived shell model due to the small thickness to edge
ratio t/a = 10−3.

Fig. 20.6 Square wall: re-
lation between the in-plane
normal stresses at a Gauss
point.
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20.4.3 Compression of a Twisted Beam

Twisted beam with length L = 12 mm, width w = 2 mm and thickness t = 0.25
mm, see Fig. 20.7, is clamped at one end and subjected at the opposite end to
imposed compressive axial displacements u = λu0, where u0 = 1.1 mm and λ is
load multiplier, which goes from 0 to 1 and back to 0. The mesh consists of 16
elements in the longitudinal and 8 elements in the transverse direction. Figure 20.8
shows deformedmesh at λ = 1, with coloured contours representing ‖Et ‖ at the mid-
surface (the red colour denotes the largest transformation and the blue colour the
smallest). At the final configuration, where λ is back to 0, the stresses are zero and no
transformation is observed. The initial shape is fully recovered and the superelastic
response is obtained. This can be nicely seen from the diagram in Fig. 20.9, which
shows the reaction force at edge 1 as a function of the imposed compressive axial
displacement of edge 2.

20.5 Conclusions

The aim of this work was to derive a finite element formulation that can be used
for large deformation and stability analysis of curved thin-walled shape memory

Fig. 20.7 Twisted beam:
geometry, mesh, boundary
and loading conditions.

Fig. 20.8 Twisted beam:
initial and deformed geometry
at λ = 1.
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Fig. 20.9 Superelastic re-
sponse of twisted beam.

alloys. It is well documented in the finite element literature that for thin shell-like
structures the 3D-solid finite element models are inappropriate, because they are
very likely introducing a considerable modelling error. For this purpose we have
revisited a seven-parameter large deformations and large rotations shell model (that
can be used for thin and thick shells), and use it as a framework for implementation
of a 3D finite strain material model for shape memory alloys. Several presented nu-
merical examples illustrate a very satisfying performance of resulting finite element
formulation.

Questions on the numerical implementation of the considered SMA material
model, a comparison with experimental results, further development of the finite
element formulation in order to be able to perform large solution steps and to be
insensitive to mesh distortions (following Lavrenčič and Brank, 2020; Brank, 2008)
and the simulation of the buckling process of shape memory alloys (using Stanić and
Brank, 2017) will be answered and shown in a separate publication.

Acknowledgements This workwas supported by European research Council (ERC) under Horizon
2020 research and innovation program (ERC Starting Grant No. 803669), and by the Slovenian
Research Agency (P2-0210).

References

Arghavani J, Auricchio F, Naghdabadi R, Reali A (2011) On the robustness and
efficiency of integration algorithms for a 3D finite strain phenomenological SMA
constitutive model. International Journal for Numerical Methods in Engineering
85(1):107–134

Auricchio F (2001) A robust integration-algorithm for a finite-strain shape-memory-
alloy superelastic model. International Journal of Plasticity 17(7):971–990



20 A Shell Finite Element Model for Superelasticity of Shape Memory Alloys 387

Auricchio F, Taylor RL (1997) Shape-memory alloys: modelling and numerical sim-
ulations of the finite-strain superelastic behavior. Computer Methods in Applied
Mechanics and Engineering 143(1):175–194

Brank B (2005) Nonlinear shell models with seven kinematic parameters. Computer
Methods in Applied Mechanics and Engineering 194(21):2336–2362

Brank B (2008) Assessment of 4-node EAS-ANS shell elements for large deforma-
tion analysis. Computational Mechanics 42:39–51

Brank B, Ibrahimbegovic A (2001) On the relation between different parametriza-
tions of finite rotations for shells. Engineering Computations: Int J for Computer-
Aided Engineering 18(7):950–973

Brank B, Korelc J, Ibrahimbegović A (2002) Nonlinear shell problem formulation
accounting for through-the-thickness stretching and its finite element implemen-
tation. Computers & Structures 80(9):699–717

Brank B, Ibrahimbegovic A, Bohinc U (2008) On prediction of 3D stress state in
elastic shell by higher-order shell formulations. Comput Model Eng Sci 33:85–
108, DOI 10.3970/cmes.2008.033.085

Brojan M, Bombač D, Kosel F, Videnič T (2008) Shape memory alloys in medicine.
RMZ – Materials and Geoenvironment 55:173–189

CoralW, Rossi C, Colorado J, Lemus D, Barrientos A (2012) Sma-basedmuscle-like
actuation in biologically inspired robots: A state of the art review. In: Berselli G,
Vertechy R, Vassura G (eds) Smart Actuation and Sensing Systems, IntechOpen,
Rijeka, chap 3

Dujc J, Brank B (2012) Stress resultant plasticity for shells revisited. Computer
Methods in Applied Mechanics and Engineering 247–248:146–165

Evangelista V, Marfia S, Sacco E (2010) A 3D SMA constitutive model in the frame-
work of finite strain. International Journal for Numerical Methods in Engineering
81(6):761–785

Hartl DJ, Mooney JT, Lagoudas DC, Calkins FT, Mabe JH (2009) Use of a ni60ti
shape memory alloy for active jet engine chevron application: II. experimentally
validated numerical analysis. Smart Materials and Structures 19(1):015,021

Hudobivnik B, Korelc J (2016) Closed-form representation of matrix functions in
the formulation of nonlinear material models. Finite Elements in Analysis and
Design 111:19–32

Ibrahimbegovic A (2009) Nonlinear Solid Mechanics. Springer, Dordrecht
Ibrahimbegovic A, Brank B, Courtois P (2001) Stress resultant geometrically exact
form of classical shell model and vector-like parameterization of constrained
finite rotations. International Journal for Numerical Methods in Engineering
52(11):1235–1252

Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy
research, applications and opportunities. Materials & Design 56:1078–1113

KanekoK, Enomoto K (2011) Development of reciprocating heat engine using shape
memory alloy. Journal of Environment and Engineering 6(1):131–139

Korelc J, Stupkiewicz S (2014) Closed-formmatrix exponential and its application in
finite-strain plasticity. International Journal forNumericalMethods inEngineering
98(13):960–987



388 Luka Porenta, Boštjan Brank, Jaka Dujc, Miha Brojan, and Jaka Tušek

Korelc J, Wriggers P (2016) Automation of Finite Element Methods. Springer
Lavrenčič M, Brank B (2020) Hybrid-mixed shell quadrilateral that allows for large
solution steps and is low-sensitive to mesh distortion. Computational Mechanics
65:177–192

McDonald Schetky L (1991) Shape memory alloy applications in space systems.
Materials & Design 12(1):29 – 32

Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys.
Journal of Metallurgy 2011:ID 501,483

Reese S, Christ D (2008) Finite deformation pseudo-elasticity of shape memory
alloys – Constitutive modelling and finite element implementation. International
Journal of Plasticity 24(3):455–482

Sofla AYN, Meguid SA, Tan KT, Yeo WK (2010) Shape morphing of aircraft wing:
Status and challenges. Materials & Design 31(3):1284–1292

Souza AC, Mamiya EN, Zouain N (1998) Three-dimensional model for solids un-
dergoing stress-induced phase transformations. European Journal of Mechanics -
A/Solids 17(5):789–806

Stanić A, Brank B (2017) A path-following method for elasto-plastic solids and
structures based on control of plastic dissipation and plastic work. Finite Elements
in Analysis and Design 123:1–8

Stupkiewicz S, Petryk H (2013) A robust model of pseudoelasticity in shapememory
alloys. International Journal for Numerical Methods in Engineering 93(7):747–
769

Tušek J, Engelbrecht K, Eriksen D, Dall’Olio S, Tusek J, Pryds N (2016) A regen-
erative elastocaloric heat pump. Nature Energy 1:1–6

VHK, ARMINES (2016) Household refrigeration technology roadmap.
https://www.eup-network.de/fileadmin/user_upload/Household_Refrigeration
_Review_TECHNOLOGY_ROADMAP_FINAL_20160304.pdf

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	20 
A Shell Finite Element Model for Superelasticity of Shape Memory Alloys
	20.1 Introduction
	20.2 Constitutive Model for SMA
	20.3 Seven-parameter Shell Model
	20.4 Numerical Examples
	20.4.1 Square Wall Under Uniaxial Loading
	20.4.2 Square Wall Under Biaxial Loading
	20.4.3 Compression of a Twisted Beam

	20.5 Conclusions
	References




