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A B S T R A C T

The inverse design of structures having tailored properties is challenging mainly due to the multiple design
solutions that can satisfy the prescribed conditions. For example, in the inverse design of morphing composite
beams, different fabrication solutions exist because the material, geometry and actuation can be varied. On
the other hand, the problem can be highly nonlinear due to the large deformations present in such problems.
For this reason, we present a generative adversarial network-based inverse design method for constructing
soft composite beams that morph into target shapes and can carry out complex prescribed motions. Our
approach makes use of composites with passive and active layers that deform into prescribed shapes due to the
strain mismatch induced by the non-homogeneous geometric and material properties as well as temperature
actuation. To test the proposed method and explore the parametric space much faster than with heating and
cooling, we established a mechanical analog (a toy model) that exploits the mechanical stretching of highly
elastic, active layers. Experiments and numerical examples demonstrate the effectiveness of our simple toy
model, for which the generator network takes the target shapes as inputs and generates the corresponding
design parameters for the fabrication of composite beams that self-deploy into prescribed shapes when released.
We extended our method for generating the design parameters for forming soft, morphing composite beams
that exhibit complex targeted motions when actuated by temperature. Our data-driven method is simple,
yet robust enough to provide solutions to complex problems and aid in the future design of soft robots and
smart-deployable structures.
1. Introduction

Morphing structures have the ability to transform from a compacted
configuration into deployed forms in which they are stable and can
withstand the prescribed loading conditions. They are usually based
on the mechanism principle (Holmes, 2019), consisting of rigid links
and flexible joints. Another, more advanced approach to structure
transformation relies on inhomogeneities of the structure, where stress
gradients drive the structure to morph into another configuration (Tim-
oshenko, 1925; van Manen et al., 2018). Recent advances in the design
of these structures have attracted many research groups, which studied
various mechanisms underlying self-deformation, see, e.g., van Manen
et al. (2018), Battista et al. (2019), Caruso et al. (2018), Nojoomi
et al. (2021), Pezzulla et al. (2015). However, for this technology to
be successfully scaled from research to an industrial level, more robust,
inverse-design methods need to be developed first.

There are various ways to induce stress gradients that can activate
the self-deployment or spatial transformation of an initially flat or
straight structure (van Manen et al., 2018). The shape transformation
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can be achieved through swelling, which can be activated differently,
e.g., by immersion in a solvent bath (Battista et al., 2019; Wu et al.,
2019), with temperature (Guo et al., 2013), diffusion (Pezzulla et al.,
2015), and light (Wang et al., 2019), but 4D-printed composites that
activate their shape-changing with heating and cooling are the most
popular among researchers (Ding et al., 2017, 2018; Huo et al., 2022).
Another promising example of actuation uses hydrostatic pressure. As
shown by Siéfert et al. (2019), a meso-structured elastomer plate can
undergo rapid, controllable, and complex shape changes when pressure
is applied. The principle of programmable bending can also rely upon
an electric field to shape structures made of dielectric liquid-crystal
elastomers, see e.g., Qiu et al. (2023). Although the presented mecha-
nisms allow for the fabrication of morphing structures that can achieve
different shapes and large deformations, they need an additional ex-
ternal stimulus or activation energy applied during the transformation
process, such as pressure, electric field, solvent, temperature or light.
On the other hand, self-deployable structures that are made by stacking
and bonding together individual, pre-stretched layers store potential
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elastic energy during the fabrication process (van Manen et al., 2018).
As a result, these so-called strain-mismatched composites deform from
initially flat (2D) configurations to deformed, pre-programmed (3D)
forms entirely on their own. They can even be stored and transported
in rolled or crumpled configurations and only need to be released when
required to deploy into their final forms (Caruso et al., 2018; DeSimone,
2018; Guo et al., 2020; Zavodnik et al., 2023).

To further extend the space of attainable shapes for self-morphing
structures, we need to precisely modify the stress-gradient distribution
over the initial structural domain. This opens a whole new field of
practical applications, such as the development of soft robots and their
parts (Ionov, 2015), various self-deployable structures (Pezzulla et al.,
2015; Siéfert et al., 2019; Wang et al., 2019), and other biomimetic
structures inspired by nature (Nojoomi et al., 2021). As a consequence,
a parameter space where multiple solutions exist also greatly expands
and thus makes the inverse problem computationally more difficult to
solve. To overcome these challenges, different techniques have been
proposed. Nojoomi et al. (2021) successfully encoded hydrogel sheets
with growth maps using a computational geometry technique to trans-
form them into the target shapes. They experimentally confirmed the
success of their algorithm by making small models of cars, fish, and
human heads. In the case of origami and kirigami structures that can
deploy into target forms, Dang et al. (2022) employed a marching
algorithm and Choi et al. (2019) solved the inverse problem with
the use of a nonlinear, constrained optimization technique. Machine
learning techniques also quickly achieved success. Their attributes
are not only used for predicting material properties, designing new
materials, and discovering new mechanisms beyond intuition (Guo
et al., 2021), but also for empowering evolutionary algorithms to solve
inverse problems (Sun et al., 2022; Wu et al., 2020).

A special branch of machine learning, known as generative model-
ing must be regarded as an important concept in modeling. It is able
to generate different independent solutions to the inverse problems
in engineering (Regenwetter et al., 2022). For example, Liu et al.
(2018) developed a generative adversarial network (GAN) architecture,
conditioned by a pre-trained simulator network, to inverse design
metasurfaces that exhibit target transmittance spectra. A similar prob-
lem was dealt with by Kim et al. (2022), where they expanded the
traditional GAN model with a classifier. A conditioned variational
autoencoder (VAE) was used in the field of aeronautics for computing
supercritical airfoil shapes (Yonekura et al., 2022). Generative models –
VAEs (Cang et al., 2018; Ma et al., 2023) and GANs (Kim et al., 2020;
Mao et al., 2020) – are also very popular for the design of complex
materials with target properties, as they are able to generate new
designs of essentially arbitrary patterns. A deep generative model was
even used to design bar mechanisms with prescribed trajectories (Kap-
salyamov et al., 2023). GAN-based frameworks therefore represent
powerful tools for solving inverse problems and can overcome the
difficulties when searching across wide parameter spaces, common in
nonlinear problems. Nevertheless, to the best of our knowledge, this
technique has not been employed for inverse design in the field of
nonlinear mechanics where multiple solutions exist, especially for the
design of morphing and self-deployable structures.

Similar to the inverse design of metasurfaces used in nanophoton-
ics (Liu et al., 2018) or in materials design (Kim et al., 2020; Mao et al.,
2020), our paper focuses on problems with multiple design solutions
that exist to satisfy equal target properties, such as final shapes and
targeted complex motions. We are therefore dealing with a one-to-many
mapping problem, where classic feed-forward neural networks become
inappropriate as they define the problem as deterministic and make the
mapping between the inputs and outputs ambiguous. To address such
problems we present a robust inverse-design method that is data-driven
and appropriate for designing morphable structures and modeling the
complex motions of these structures. We use a GAN-based model (Liu
et al., 2018; Arjovsky et al., 2017; Gulrajani et al., 2017) to design
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morphing structures, that in principle have multiple design solutions for
the same target shapes. By taking advantage of the properties of layered
composites we find that when bonded, the base (passive) and added
(active) layers deform into a prescribed shape due to the strain mis-
match induced by the non-homogeneous material properties and/or the
(non-homogeneous) actuation. These experimental realizations include
materials that can be actuated via different physical principles. Perhaps
the most straightforward example is making heat-actuated composites
that exploit the mismatch in coefficients of linear thermal expansion
in the applied layers, like in bimetallic strips. To test the proposed
numerical procedure and explore the parametric space more quickly
than via application of heat (and especially cooling), we employ a
mechanical analog to thermal actuation that consists of highly flexible
sheets of silicone polymer. By carefully stretching the individual active
segments and adhering them to the stress-free base layer, the strain
mismatch together with the geometric and material properties of each
layer determine the curvature of the newly formed structure that forms
after the structure is released. We refer to these parameters as the
design parameters and they are meant to be determined so that the
composite beam can self-deploy into the target shape. We found that
this simple toy model can effectively solve many rather complex inverse
problems. We used our procedure to design soft actuator beams that
morph into target complex shapes during the actuation, potentially
leading to the development of a robust method for rapid prototyp-
ing and fabricating soft robots, smart-deployable structures and other
systems with applicative features.

The remainder of the paper is organized as follows. Section 2
describes the problem and Section 3 the overall description of the GAN-
based model, neural network architectures, training dataset creation
and details about the training procedure. The description of the com-
posite beam’s fabrication is presented in Section 4, while Section 5
discusses the results of the toy model. Section 6 presents the extended
use of our approach for designing morphing actuator beams, and the
conclusions are drawn in Section 7.

2. Inverse problem of deployable beams

In our system we follow a concept of deployable structures where
target final shapes are known and the fabrication parameters are not.
By using a flat, thin layer of length 𝐿, width 𝑊 and height 𝐻 , made of a
highly elastic material with a modulus of elasticity 𝐸, bonded together
with multiple pre-stretched layers that carry finite values of pre-stretch,
we ensure the formation of a layered composite beam made of multiple
distinct segments that is able to freely deform. The pre-stretched layers
can be bonded either on the top or the bottom side, depending on
the desired sign of the curvature. The generator network is trained
to determine the design parameters �̃� that include an amount of pre-
stretch 𝜆, length 𝑙, width 𝑤, height ℎ and modulus of elasticity 𝑒 of each
layer. The amount of pre-stretch is defined as 𝜆 = 𝑙∕𝑙0, where 𝑙 and
𝑙0 are the stretched and initial lengths of each segment, respectively.
The details of the system, design parameters and fabrication scheme
are presented in Fig. 1.

Note that this model does not strictly represent a morphing structure
because the deformation, once it is final, cannot be reversed. However,
as the system is elastic it will serve as a toy model to experimentally
verify the feasibility of the predicted solution. Exactly the same pro-
cedure could be used to design a heat-actuated reversible mechanism
that could do mechanical work (movement) when heated or cooled.

3. GAN-based model for inverse design

3.1. Overall description of the model

The generator network is only a part of a larger neural network
model consisting of three individual components, see Fig. 2. The first
two form a classic GAN model, an unsupervised learning technique

consisting of two neural networks, i.e., a generator network and a critic
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Fig. 1. Neural network-based approach to the inverse design of soft, self-deployable
structures. (a) A successfully trained generator network is able to generate candidate
solutions of design parameters for forming soft composite beams. The network accepts
the target shape representation 𝜿 for each segment of the beam and outputs the design
parameters �̃� = (𝑙, 𝜆, ℎ,𝑤, 𝑒)⊺. (b) Individual segments are prepared according to the
generated design parameters, i.e., cut to the right dimensions, stretched and bonded to
the base layer. Upon release, the composite beam deforms into the target shape.

Fig. 2. Individual components of the neural network model for the inverse design of
morphing structures. The model consists of three individual networks, the generator
and critic networks from the GAN and a pre-trained simulator network. The generator
network accepts the target beam-shape representation 𝜿 concatenated with random
noise. Its output, the generated design parameters �̃�, are then used as inputs to the
critic and simulator networks. The critic network learns from the generated samples �̃�
and the samples 𝒅 from the library of feasible design parameters. Together with the
pre-trained simulator network outputting the predicted beam-shape representation (�̃�),
they drive the generator network to generate feasible and accurate design parameters.

network, which compete to create new data with a similar distribution
to the training dataset. The generator network is trained to create new
data (in our case the design parameters �̃�), and the critic network
is trained to recognize the authenticity when compared to the given
example 𝒅 from the library of feasible design parameters. In other
words, the critic network can be thought of as an agent that assesses
the feasibility (e.g., tells the generator network that only geometric
properties with non-negative values are desired) of the generated de-
sign parameters �̃� and indirectly controls the generator network to
produce feasible new data. A pure GAN model is not sufficient to
generate accurate design parameters that would result in a target shape
of the beam. If the generated design parameters only relied on the
critic network, they would eventually produce a deformed shape, but it
would probably differ significantly from the target shape. The solution
lies in extending the original GAN model with a pre-trained simulator
network capable of predicting the shape representation (�̃�) based on
the provided design parameters �̃� (Liu et al., 2018; Kim et al., 2022).
3

The entire framework for determining the design parameters of the
deployable composite beams works as follows: the generator network
accepts the target properties in the form of a normalized vector 𝜿 =
(𝜅, 𝑛)⊺ merged with a vector of random noise of size 50 from a uniform
distribution  ([−1, 1]). Thus, an input training example consists of
two parameters; the curvature 𝜅 of the individual beam segment and
𝑛, a discretization number of this segment (all target shapes were
discretized with interval of 1 mm). The generator network generates the
proposed design parameters �̃�, which are then sent to both the critic
and simulator networks. The critic network outputs the design feasi-
bility (critic) loss C by predicting the score of the generated sample
(�̃�) and the score of the training sample (𝒅) to evaluate the distance
between the generated (fake) �̃� and the real sample 𝒅. In this study, we
extended the critic loss by using the gradient penalization (Gulrajani
et al., 2017; Petzka et al., 2018),

C = (�̃�) − (𝒅) + 𝛾
(

max (0, ‖∇(�̂�)‖2 − 1)
)2 , (1)

where �̂� = 𝜖𝒅 + (1 − 𝜖)�̃� is the interpolation between the design
parameters from the library of feasible design parameters and the
generated design parameters, while 𝜖 ∼  ([0, 1]) is a random number
and 𝛾 is the penalty coefficient. The simulator network predicts the
shape representation of the composite beam (�̃�) for the calculation of
the shape loss, which is used with the appropriately set parameter 𝜔 for
balancing between the feasibility and shape losses to jointly steer the
generator network to generate feasible and accurate design parameters
�̃�,

G = −(�̃�) + 𝜔MSE(𝜿 − (�̃�)). (2)

Here, MSE represents the mean squared error.

3.2. Neural network architectures

The generator network consists of three sequential dense – batch
normalization – ReLU layer blocks with 32 neurons in each dense
layer, followed by a dense output layer with 5 neurons having a linear
activation function for each of the respective design parameter. The
critic network also consists of three sequential dense – leaky ReLU(0.2)
layer blocks with 64, 32, and 16 neurons in each dense layer, respec-
tively. The output layer is a dense layer with 1 output neuron having a
linear activation function. The architecture of the pre-trained simulator
network is similar to the architecture of the inverted generator network
and consists of a dense – leaky ReLU(0.1) layer block with 50 neurons
and an L2 kernel regularizer with a 0.001 regularization factor. The
output layer is a simple dense layer with 2 output neurons and a linear
activation function.

3.3. Construction of the training dataset

To train the generator network and the critic network of the GAN-
based model, as well as the simulator network, a training dataset was
created first. It consists of about 50,000 pairs of design parameters
and shape representations. The geometric properties, such as the length
𝑙, width 𝑤 and height ℎ, of active layers were drawn from uniform
distributions in the ranges 𝑙 ∼  ([20, 200]) mm, 𝑤 ∼  ([10, 20]) mm,
and ℎ ∼  ([1, 3]) mm, respectively. The strain-mismatch values were
obtained by first sampling the strains 𝜀 from a normal distribution with
mean 0 and width 0.2 (𝜀 ∼  ([0, 0.2]). Then, 1 was added to all the
positive strain values and subtracted from all the negative strain values,
according to the relationship 𝜆 = 𝜀+1× sign(𝜀), so that |𝜆| ≥ 1 is forced
(note that when 𝜆 = 1 the layer is not strained).

A positive strain mismatch means that the layer must be bonded to
the top of the base layer, resulting in positive curvature, and vice versa.
The geometric properties of the base layer were fixed at 𝑊 = 20 mm
and 𝐻 = 2 mm. In the experiments, both the base and active layers were
made of Zhermack Elite Double 32, a two-component, silicone-based
elastomer with a modulus of elasticity equal to 𝐸 = 𝑒 = 1.37 MPa. The
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modulus of elasticity was determined by large-displacement cantilever
bending tests, see Lolić et al. (2020). To fully construct the training
dataset, the curvatures 𝜅 needed to be computed. This was done
with our in-house-developed code for calculating the curvatures and
displacements of layered composite beams. The code was based on the
assumptions that the beam is sufficiently thin and not loaded to an
extreme degree (e.g., folded) so that the analysis can be limited to small
strains, while allowing large rotations and large displacements. This
meant that the Euler–Bernoulli beam theory with nonlinear kinematics
could be applied. The material (rheological) model was linear elastic,
see Lolić et al. (2020). A concise overview of the theory is given in
Appendix A and the material alternatives that could be used to replicate
the experimental results are given in Appendix C.

3.4. Training

The training samples normalized in [0, 1] were used to train the
generator and critic networks. However, for the pre-trained simulator
network, the training dataset was identically normalized and split into
training, validation and testing datasets in proportions 60, 20, and
20 %, respectively. Here we need to mention that the percentage used
for training the simulator network might seem rather low. This is due
to the fact that we identified the need for a larger number of training
samples to train the generator and critic networks, while the simulator
network trained well. Therefore we have expanded the training dataset
(from an initial ∼37,500 to ∼50,000 samples) and wanted to keep
the same number of training samples when re-training the simulator
network, i.e., roughly 30,000 training pairs. The simulator network was
trained first in a classic supervised manner so that it could later be
used to help train the generator network. It was compiled using the
RMSprop optimizer, a learning rate of 2 ⋅ 10−5, a momentum of 0.9,
and the MSE loss function. Training was completed in 30 epochs with
64-sized batches.

Both the generator and critic networks’ weights were alternately
updated during the training steps using the Adam optimizer with a
learning rate of 5 ⋅ 10−5. The parameters 𝛾 and 𝜔 were set to 10.
The generator network was trained in 90,000 generator iterations,
while the critic network was trained five times per generator iteration,
both with batches of size 64. The plot of negative critic losses is
shown in Fig. 3(a), where the simulations of the composite beam’s
deflections using the generated design parameters during the training
procedure are compared for a random training example. A batch of
1,000 randomly selected training samples was used to compute the MSE
metric between the target curvatures and the curvatures computed from
the generated design parameters at pre-determined iterations, Fig. 3(b).
The training procedure was stopped when the metric dropped below
2 ⋅ 10−5, in our case at 90,000 generator iterations. At the end of the
training, we also randomly selected 5,000 design parameters from the
library of feasible design parameters and generated the same amount
to verify the similarity between the density distributions, Fig. 3(c–
e). The generator network trained well as it is capable of generating
design parameters with a similar distribution to the training dataset
for forming beam segments that deform into target shapes.

All the neural networks were trained and developed using the
Tensorflow machine learning library running on a laptop computer
with 8 GB NVIDIA GeForce RTX 2070 Super graphics card (7.5 compute
capability) and NVIDIA CUDA Deep Neural Network Library.

4. Experimental fabrication

We 3D printed four molds of (180 × 50 × ℎ) mm in size, where
ℎ ∈ {1.0, 1.6, 2.0, 2.4}, and an additional mold of size (300 × 50 × 2) mm
to fabricate the silicone sheets from the aforementioned material. The
fabricated sheets were all over-sized in length and width so that the
individual segments could be cut according to the generated design
parameters. Since the individual active layers were all stretched before
4
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Fig. 3. Training the GAN-based neural network model. (a) Plot of negative critic losses
that correlate with the quality of the generated samples. The simulated deflection of
a random composite beam (green dots) designed according to the generated design
parameters visibly converges to the target shape (red curve). (b) Plot of MSE metric
between the target curvatures and the curvatures computed from the 1,000 randomly
selected generated design parameters. This metric was computed at pre-determined
iterations and used to stop the training procedure when the value dropped below
2 ⋅ 10−5 (c–e) Comparison of density distributions between the training samples (red
histograms) and the generated samples (green histograms) for pre-stretches (c), heights
(d) and widths (e) of active layers.

being bonded to the base layer of the composite beam, the Poisson
effect had to be taken into account. We used 𝜈 = 0.499, as measured
uring the compressibility test of the material. Therefore, each active
ayer was cut to length 𝑙0 and in width 𝑤∕(1 − 𝜈(𝜆 − 1)), according
o the design parameters. We also designed a simple apparatus made
f 3D-printed parts and two threaded rods to provide a simple and
fficient way to accurately pre-stretch the individual beam segments
nd position them on the corresponding side of the base layer. A
napshot of the apparatus is shown in Fig. 4(a).

In the fabrication procedure, the base layer was first placed on a
lat acrylic plate and then the correspondingly cut and pre-stretched
eam segment was coated with a thin layer of the same polymer in
he liquid phase to achieve practically a perfect bond when positioned
n the base layer. An additional acrylic plate and some weights were
sed to prevent the layers from misaligning, Fig. 4(b). After the bonding
aterial cured, the excess material was removed and the newly formed

omposite beam was released to deform. This process was repeated in
egments to achieve the final shape.

. Results and discussion

In this section we present and discuss the results of the experiments
nd simulations on the soft composite beams that deploy into the
arget shapes. We defined the different shapes that we wanted to
abricate and to verify the algorithms experimentally. We constructed
shapes consisting of 3 random samples from the training set, defined
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Fig. 4. Apparatus for the fabrication of morphing soft composite beams. (a) Snapshot of
the fabrication phase of a composite beam in the apparatus that consists of 3D-printed
parts, bolts, nuts and threaded rods. By tightening the nuts, the stretch in individual
layers can be controlled very precisely. (b) Cross-sectional view of the fabrication phase.
The bonding material is applied to the stretched layer only by the segment length 𝑙.

a circular shape and 2 shapes representing a wave and a spiral. All
the target shapes are shown with red curves in Fig. 5. The target
shapes served as inputs to our trained generator network, which gave
us the required design parameters. Since the generator network is
able to accept multiple target shapes and therefore generate a number
of independent design-parameter candidate solutions, multiple design-
parameter combinations were generated for the entire composite beam
simultaneously, which allowed us to select the ones that we could
actually fabricate. Once all the composite beams were fabricated, each
of them was optically scanned using an Epson V550 photo scanner, and
the scanned images were processed in Corel Photo-Paint image-editing
software (the raw images are shown in Appendix B). The comparison
between the target shapes and the fabricated samples is shown in
Fig. 5 for the different shapes. The numbers shown in this figure
refer to individual segments and serve as identifiers for the design
parameters used to fabricate each composite beam. They are gathered
in Table 1, which also contains the target radii of curvature and the
generated radii of curvature predicted numerically. The generated de-
sign parameters were used in our in-house-developed code to calculate
the displacements of virtual composite beams. An excellent agreement
shows that the generator network is able to successfully generate
candidate solutions for design parameters that form soft, deployable
composite beams. The last two columns in Table 1 also present a
numerical comparison between the radii of curvature for the numerical
simulations of the generated design parameters and the measurements
from the experiments, but they cannot be directly compared to the
target radii of curvature. This is because the radius of curvature of the
neutral plane cannot be measured accurately. Therefore, the bonding
plane was chosen instead, because it can be easily determined from
scanned images of deformed beams.

From Fig. 5(d) and Table 1, case (d), we can see that the generator
network has no problem producing different outputs for the same
inputs (the target shape of a wave consists of three equal segments),
which is not the case when using ordinary neural network architec-
tures. Some deviations also occur due to slightly inaccurate predictions
of the design parameters and also due to the fabrication phase. We
identified that the layer heights and the pre-stretch amounts have the
most influence on the final shapes.

To further test the capabilities of the generator network, we took
inspiration from Pablo Picasso’s line art. We constructed a shape rep-
resenting a camel and used a shape representing a handwritten word.
By using the generated design parameters to calculate the curvatures
5

and displacements, we were able to closely approximate the target
Fig. 5. Comparison of target beam shapes (red curves) and composite beams (green
silicone polymer) fabricated according to generated design parameters. (a) and (b)
shapes assembled from random training examples, (c) circle, (d) wave, and (e) spiral.
The numbers referring to each layer indicate the design parameters used to fabricate
each composite beam, see Table 1.

Table 1
Generated design parameters to fabricate composite beams used in the experiments for
(a) and (b) shapes assembled from random training examples, (c) circle, (d) wave, and
(e) spiral. Numerical comparison between target 𝑟 and calculated radii of curvature 𝑟
of the neutral planes, and numerical comparison between calculated 𝑟b and measured
radii of curvature 𝑟b of the bonding planes.

seg. 𝑙 [mm] 𝜆 [1] ℎ [mm] 𝑤 [mm] 𝑟 [mm] 𝑟 [mm] 𝑟b [mm] 𝑟b [mm]

(a)1 63 −1.12 1.0 17.9 18.6 18.5 17.3 18.9
(a)2 93 1.14 2.4 19.3 21.1 21.1 19.7 20.2
(a)3 61 1.20 1.6 10.9 12.9 12.7 11.5 14.7

(b)1 26 −1.04 2.4 14.7 88.8 84.5 83.2 73.2
(b)2 40 1.12 1.0 17.1 20.4 20.1 18.8 20.2
(b)3 112 −1.07 1.6 13.3 34.7 35.2 33.9 31.4

(c)1 120 1.13 1.6 18.7 19.2 19.2 17.9 18.8

(d)1 70 −1.15 2.0 14.4 18.0 19.0 17.7 17.6
(d)2 70 1.14 1.6 11.8 18.0 18.0 16.8 17.9
(d)3 70 −1.13 1.0 15.7 18.0 17.7 16.5 17.5

(e)1 38 1.22 2.0 12.4 12.0 12.1 10.9 14.0
(e)2 56 1.14 1.6 10.7 18.0 18.1 16.8 17.3
(e)3 82 1.09 1.0 18.4 26.0 26.0 24.8 24.4
(e)4 112 1.08 2.4 14.0 36.0 36.0 34.7 30.7

shapes. However, some deviations are also visible because the errors
are cumulative. For example, incorrect design parameters for the shape
of the letter ‘‘n’’ affect the deviations on subsequent letters in the
case when the shapes are clamped at one free end. We have also
designed a similar target shape to the one that Sun et al. (2022)
used in their work (black curves in Fig. 6(c–g)) and generated 10,000
different combinations of design parameters in less than 0.8 s. This is
a significantly shorter time compared to the at least 11 min that took
to generate only one design in Sun et al. (2022). The reason for this is
that we use a different approach for generating the design parameters,
which includes the trained generator network, while Sun et al. (2022)
used an evolutionary algorithm where a recurrent neural network
replaces the finite element method. Also, the mechanics behind the
morphing of the beams is not the same. We then randomly selected
5 different design-parameter combinations and plotted the resulting
deformed shapes in comparison to the target shapes (dotted curves in
Fig. 6(c–g)) where an excellent agreement can be observed, which is
not the case in the aforementioned paper. This all indicates that our
method is more suitable for the fast and reliable generation of design
parameters and the fabrication of morphing structures. To compare the
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Fig. 6. Generating design parameters for the fabrication of composite beams that
deploy into the target shapes, inspired by Pablo Picasso’s line art (a) and the
handwritten word ‘‘lanem’’ (b). (c-g) Comparison of resulting shapes from different
generated design parameters for the target shape, similar to in Sun et al. (2022).

resulting shapes with the target ones, we also computed the root-mean-
square errors between the calculated curvatures from the generated
design parameters and the target curvatures for each subfigure in Fig. 6.
The values are {1.43, 6.47, 0.78, 0.76, 0.65, 0.67, 1.01}⋅10−3 1/mm for each
case in Fig. 6, respectively.

6. Morphing composite beams

So far we have shown how GAN-based architectures can be success-
fully used for the inverse design of the mechanical analog of morphing
structures. In this section we increase the complexity of the inverse
design and include target complex motions during the actuation with
temperature. In this numerical example we replaced the pre-stretch
parameter 𝜆 with the coefficient of linear thermal expansion 𝛼 and
he temperature load 𝛥𝑇 according to the relation 𝜆 − 1 = −𝛼𝛥𝑇 .
reviously, a positive pre-stretch meant that the active layer needed
o be bonded to the top side of the base layer, resulting in a positive
urvature. Now, to achieve the same effect, an active layer can either
e placed on the top side and cooled down (negative 𝛥𝑇 ) or on the
ottom side and heated up (positive 𝛥𝑇 ). We kept the same geometric
roperties of active layers as before, and the material properties were
∼  ([0.001, 0.009]) 1/K and 𝑒 ∼  ([1, 2]) MPa, while the temperature

oad was 𝛥𝑇 ∼  ([−100, 100]) K. The properties of the base layer
ere the same, except for the coefficient of linear thermal expansion,
hich was set to 0 to maintain similarity with the mechanical analog.
he neural network architecture was just slightly modified, increasing
6

Table 2
Generated design parameters for forming soft morphing beams that demonstrate
complex target motions during the actuation with temperature.

seg. 𝑙 [mm] ℎ [mm] 𝑤 [mm] 𝑒 [MPa] 𝛼 [1/K]

(a)1 17 2.6 17.6 1.47 0.0048
(a)2 81 2.2 17.6 1.42 0.0042

(b)1 44 2.9 10.6 1.65 0.0024
(b)2 64 2.6 12.0 1.96 0.0028
(b)3 64 2.1 12.5 1.80 0.0018

the number of neurons in the generator network’s output layer to 6.
This is because the design-parameter space now carries 6 independent
variables (we added 𝛥𝑇 and replaced 𝜆 with 𝛼).

To design a morphing composite beam we first constructed two tar-
get shapes that the actuator has to include in its motion, e.g., the home
position and the end position. Then, a large number of candidate design
parameters were generated and the appropriate solution was chosen
using a simple algorithm implementing the following conditions: geo-
metric and material properties of the morphing composite beam have
to be segment-wise equal for both target shapes. However, they are
allowed to differ between individual segments, and the temperature
load 𝛥𝑇 had to be equal for all those segments as the whole beam was
being heated/cooled. These conditions gave us two solutions for the
design parameters (for both target shapes) with negligible differences
for the geometric and material properties due to the large number of
generated design parameters to choose from.

To showcase the extended capabilities of our toy model we present
the designs of two different morphing composite beams that can be
actuated by temperature to carry out a complex prescribed motion.
Fig. 7(a) shows the first beam configuration that is able to morph from
the target home position (dashed red curve) when cooled down by 25 K,
and into the target end position (solid red curve) when heated by 35 K
from the initial temperature. Similarly, the second beam configuration
shown in Fig. 7(b) can make a continuous movement between the
target home and end positions when heated continuously by 51 K. A
good match is obtained between the target and algorithmically modeled
configurations. Nevertheless, we should mention that an exact match
could not be obtained due to the aforementioned condition of selecting
the design parameter solution. The generated design parameters are
listed in Table 2 and are referred to layers indicated by numbers in
respective insets in Figs. 7(a) and (b) that correspond to composite
beams presented in this figure.

7. Conclusions

We presented a method for forming soft composite beams that can
morph into target shapes. First, the inverse problem and the toy model
are described. The problem is defined as a self-deployable composite
beam where the target shape is known, but the design parameters for
forming individual segments are not. The composite beam is made of
a load-free base layer to which a number of pre-stretched layers are
bonded according to the design parameters. To solve this problem we
adopted a machine learning approach that employs a generative model-
ing technique. Specifically, we developed a neural network architecture
consisting of three neural networks: the generator network, the critic
network and the pre-trained simulator network. The generator network
tries to generate candidate solutions for the design parameters, while
the critic network ensures the feasibility of the generated design param-
eters, and the simulator network verifies their accuracy. In addition, we
developed a simple apparatus that enables the straightforward fabrica-
tion of composite beams. For the experiments, we defined several target
shapes, generated design parameters, and fabricated composite beams.

The comparison between the target and fabricated shapes showed
excellent agreement with only minimal deviations between the target

and calculated radii of curvature from the generated design parameters.
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Fig. 7. Generating design parameters for the fabrication of soft morphing beams that
can be actuated by heating/cooling to demonstrate a complex motion. Two examples of
beams (a) and (b) that morph from the target home positions (dashed red curves) into
the target end positions (solid red curves). The dashed black lines represent the initial
shapes of both beams, which are (a) 98 mm and (b) 172 mm long. The respective
insets in (a) and (b) show the structure of morphing beams with the design parameters
given in Table 2.

However, slightly larger deviations were found when comparing the
calculated radii of curvature from the generated design parameters and
the measured radii of curvature for the actual fabricated beams. This
was mainly due to experimental errors, such as the lack of precision
during the cutting stage, incomplete bonds between layers, and mea-
suring errors. However, as observed from the numerical experiments,
forming composite beams with a larger number of segments presents a
moderate difficulty because any possible errors in the first segments
can break the agreement between the target and actual shapes. We
also compared our approach with the work of Sun et al. (2022),
where we constructed a similar shape as they did, generated the design
parameters and compared the simulated shapes with the target ones.
We found that our approach is not only faster, but also more accurate
at generating the design parameters in this particular case. However,
we need to mention that their neural-network-empowered evolutionary
algorithm still holds great potential for solving inverse problems. The
ideas from the toy model were then used to design soft morphing
composite beams that, when actuated with temperature, can exhibit
complex target motions. This was demonstrated with two numerical
showcases, resembling a soft-robot actuator.

The presented method demonstrated its potential for designing
morphing structures that have the ability to morph into target shapes. It
was shown that when using the strain mismatch as the potential energy
storage, no additional external stimulus or activation energy is required
7

Fig. A.8. Cross-section of an 𝑚-layered composite beam and the corresponding
coordinate systems.

to transform the structure from an initial to a deformed configuration.
We also showed how simple models are able to solve more complex
inverse problems compared to our toy model. We believe that com-
bining the capabilities of the presented method and the advantages of
such structures holds great potential for developing advanced morphing
structures and will motivate further studies.
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Appendix A. Theory of layered composite beams

In the following lines, some of the basics of strain-mismatched
composite beams are presented (see also, e.g., Timoshenko (1925)).

Fig. A.8 presents the rectangular cross-section of an 𝑚-layered com-
posite beam, where each layer has width 𝑤𝑖 and height ℎ𝑖, while it is
made of a material with a modulus of elasticity 𝑒𝑖, 𝑖 ∈ {1,… , 𝑚}. On
each layer we define a local coordinate system (𝑦𝑖, 𝑧𝑖) that is offset by
−𝑎 + 𝛿𝑖 from the main material coordinate system (𝑦, 𝑧). Each layer is
pre-stretched by 𝜆𝑖.

The main material coordinate system (𝑦, 𝑧) lies on the neutral plane
with its origin positioned at the mid-width and distanced by 𝑎 from the
bottom of the beam. At each cross-section a curvature 𝜅 is recorded.
Due to the pre-stretch of individual layers, stress 𝜎𝑖 occurs in each layer,
according to the following expression

𝜎 (𝑧) = 𝑒 (−𝑧𝜅 + 𝜆 − 1). (A.1)
𝑖 𝑖 𝑖
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Fig. B.9. Screenshots of the raw images from the experiments.

It follows from the free boundary conditions that the inner axial force
and the inner bending moment have to be equal to zero,
𝑚
∑

𝑖=1
𝑤𝑖 ∫𝑧

𝜎𝑖(𝑧)d𝑧 = 0, (A.2)

𝑚
∑

𝑖=1
𝑤𝑖 ∫𝑧

𝜎𝑖(𝑧)𝑧d𝑧 = 0. (A.3)

Introducing Eq. (A.1) into Eqs. (A.2) and (A.3) and transforming to local
coordinate systems with 𝑧 = −𝑎 + 𝛿𝑖 + 𝑧𝑖 we can obtain the following
system of equations,

𝑚
∑

𝑖=1
𝐴𝑖𝑒𝑖

(

(𝑎 − 𝛿𝑖)𝜅 + 𝜆𝑖 − 1
)

= 0,

𝑚
∑

𝑖=1

[

𝐴𝑖𝑒𝑖(𝑎 − 𝛿𝑖)((𝑎 − 𝛿𝑖)𝜅 + 𝜆𝑖 − 1) + 𝑒𝑖𝐼𝑖𝜅
]

= 0,
(A.4)

where 𝐴𝑖 = 𝑤𝑖ℎ𝑖 and 𝐼𝑖 = 𝑤𝑖ℎ3𝑖 ∕12. The solution for our case study with
𝑚 = 2, gives the expression for calculating 𝜅, see Timoshenko (1925),

𝜅 = sign(𝜆)
6ℎ𝐻𝑤𝑊 (ℎ +𝐻)(abs(𝜆) − 1)

(𝑤ℎ2 −𝑊𝐻2)2 + 4ℎ𝐻𝑤𝑊 (ℎ +𝐻)2
. (A.5)

With a known curvature 𝜅, it is straightforward to calculate dis-
placements from the known expressions from differential geometry:

𝜗′(𝑠) = 𝜅(𝑠), 𝑥′(𝑠) = cos 𝜗(𝑠), 𝑧′(𝑠) = sin 𝜗(𝑠), (A.6)

where 𝑠 is the curvilinear coordinate along the longitudinal axis of the
beam. The boundary conditions are

𝜗(0) = 0, 𝑥(0) = 0, 𝑧(0) = 0. (A.7)

Appendix B. Raw images of the experimental samples

The raw versions of the experimental samples from Fig. 5 are given
in Fig. B.9.

Appendix C. Alternative materials

Here, we briefly discuss the materials that we have tested during
the experimental stage and the materials that could also be used as
alternatives in replicating our experiments.

- VPS (a-silicone) duplicating materials: In our experiments we
used Zhermack Elite Double 32, a two-component silicone-based
elastomer. This family of materials is primarily used in the dental
sector for the purpose of duplication (www.zhermack.com). A
series of tests were performed on the whole family of the product
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ranging from Elite Double 8 (the softest version) to Elite Dou-
ble 32 (the stiffest version that is approximately 5 times stiffer
than the softest one). We found the latter version is the most
appropriate for conducting our experiments. Moreover, we rec-
ommend using the standard versions, not the ‘‘fast-curing’’ ones
that demand (too) fast assembly of the composites, and highly
recommend using a professional mixer for mixing the catalyst and
the base to avoid trapping air bubbles.

- VHB sealing tapes: Our initial tests on composite beams were
made using a very-high-bond (VHB) self-adhesive sealing tapes
from 3M (www.3m.com). They are quite easy to work with, how-
ever in our case we found that the adherence was not sufficient
when joining two pieces of the same material together.

- 3D printing TPU materials: The development of very soft 3D
printing materials offers a great potential for fabricating compos-
ite beams and beyond, because individual pieces can be simply
3D-printed into the desired forms. Additionally, such approach
has an important advantage since no cutting is needed in the pro-
cess of the fabrication. We recommend a commercially available
Recreus Filaflex 60 A Pro filament (www.recreus.com). However,
the non-homogeneity of the printed composite layer could cause
some unwanted warpings after the release of the composite from
the stretching apparatus.
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