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A B S T R A C T

Compressed elastic films on soft substrates release part of their strain energy by wrinkling,
which represents a loss of symmetry, characterized by a pitchfork bifurcation. Its development
is well understood at the onset of supercritical bifurcation, but not beyond, or in the case of
subcritical bifurcation. This is mainly due to nonlinearities and the extreme imperfection sen-
sitivity. In both types of bifurcations, the energy–displacement diagrams that can characterize
an energy landscape are non-convex, which is notoriously difficult to determine numerically or
experimentally, let alone analytically. To gain an elementary understanding of such potential
energy landscapes, we take a thin beam theory suitable for analyzing large displacements
under small strains and significantly reduce its complexity by reformulating it in terms of
the tangent rotation angle. This enables a comprehensive analytical and numerical analysis of
wrinkling elastic films on planar substrates, which are effective stiffening and/or softening due
to either geometric or material nonlinearities. We also validate our findings experimentally. We
explicitly show how effective stiffening nonlinear behavior (e.g., due to substrate or membrane
deformations) leads to a supercritical post-bifurcation response, makes the energy landscape
non-convex through energy barriers causing multistability, which is extremely problematic for
numerical computation. Moreover, this type of nonlinearity promotes uni-modal, uniformly
distributed, periodic deformation patterns. In contrast, nonlinear effective softening behavior
leads to subcritical post-bifurcation behavior, similarly divides the energy landscape by energy
barriers and conversely promotes localization of deformations. With our theoretical model we
can thus explain an experimentally observed phenomenon that in structures with effective soft-
ening followed by an effective stiffening behavior, the symmetry is initially broken by localizing
the deformation and later restored by forming periodic, distributed deformation patterns as the
load is increased. Finally, we show that initial imperfections can significantly alter the local
or global energy-minimizing deformation pattern and completely remove some energy barriers.
We envision that this knowledge can be extrapolated and exploited to convexify extremely
divergent energy landscapes of more sophisticated systems, such as wrinkling compressed films
on curved substrates (e.g., on cylinders and spheres) and that it will enable elementary analysis
and the development of specialized numerical tools.
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1. Introduction

Wrinkling occurs when a thin structure adhered to a soft substrate is subjected to sufficiently large compressive membrane
tresses either due to internal loads induced by temperature change, drying, residual stresses, or specific external loads. It can be
ndesirable, such as in drying fruit, skin aging, coating drying or in coating polymers with metals in transistor fabrication process
Liang et al., 2002), or desirable, e.g., for advanced functionalities such as wrinkled artificial skins (Huck, 2005), sound insulation
Hosseinpour et al., 2022), fabrication of smart surfaces enabling super-hydrophobic/hydrophilic behavior (Sabbah et al., 2016) and
ydro-/aerodynamic drag reduction (Terwagne et al., 2014). Even mechanistic description of organ development can be attributed
o wrinkling (Balbi et al., 2015; Ben Amar and Goriely, 2005).

The mechanics of wrinkling is a fairly well understood field, at least from the aspect of the linear bifurcation analysis (for a
oncise survey, see Nikravesh et al., 2020; Li et al., 2012). In the case of wrinkling with a super-critical pitchfork bifurcation,
.g., on some simple cases of beams and plates on an elastic foundation, the post-bifurcation regime can be explored with most
ommercial numerical modeling tools and simulated through mechanical compression, thermal expansion, growth, swelling, etc.
he simplest but the most time-consuming way of numerical modeling is by using 3D solid finite elements (Li et al., 2011), which
nables the use of an arbitrary material model. The computational cost can often be considerably reduced by using plate/shell
inematics to model the film without compromising much of the accuracy, see, e.g., Veldin et al. (2020, 2021). Ultimately, using
he aforementioned kinematic assumptions on the film and modeling the effects of the substrate with the use of a Winkler type
f substrate, the computational cost can be reduced even further, Veldin et al. (2020, 2019) and Stoop et al. (2015). This method
roduces results comparable to the experiments in terms of deformation. However, it can forecast critical loads that are up to 10
imes larger than those observed experimentally.

In systems with a super-critical bifurcation wrinkling, such as wrinkling of films on linear (Huang et al., 2005) or stiffening
ubstrates (Wang et al., 2023), a locally stable equilibrium solution in the immediate and moderate post-bifurcation regime can
sually be obtained by following the continuous deformation evolution, which can be predicted by the linear bifurcation analysis in
he post-bifurcation regime. However, as the magnitude of deformations increases further from the onset of wrinkling bifurcation,
he potential energy landscape becomes increasingly more dependent on the (geometric and material) nonlinearities that promote
on-convexity in the energy–displacement diagrams and therefore multiple locally stable equilibrium deformation states. If the
riginal equilibrium path is stable (as it occurs in the case of a period-doubling bifurcation, see, e.g., Brau et al., 2011), other
xisting stable equilibrium paths may be difficult to observe, as they are divided by energy barriers in the energy landscape (for
concise summary of the concept see Hutchinson and Thompson, 2018). These energy barriers characterize the degree of local

tability of each deformation state and are crucially important for the choice of a likely selected deformation state in a real system.
In contrast to the mechanics of wrinkling with super-critical bifurcation, where at least one of the equilibrium states can easily be

ound, it can be quite difficult to find any equilibrium state in the wrinkling of structures with sub-critical bifurcation. This category
ncludes wrinkling in planar films on softening substrates (see, e.g., Hunt et al., 1989; Wadee et al., 1997; Thompson and Virgin,
988) or wrinkling of cylindrical/spherical shells on elastic foundations (see, e.g., Brojan et al., 2015; Stoop et al., 2015; Veldin
t al., 2019). Due to the material softening and eventual collapse of structural stiffness, the immediate post-bifurcation equilibrium
ath is extremely unstable. Immediately after the system reaches the bifurcation point, the structure experiences a wild dynamic
ump from the trivial deformation state into a far-from-trivial equilibrium deformation state with much lower potential energy.
ecause this new stable equilibrium state is so far from trivial equilibrium, it has relatively large magnitudes of deformation with
he choice of deformation patterns heavily governed by geometric/material nonlinearities. The deformation patterns are so-called
patial chaotic and analogous to those obtained in the time evolution of multidimensional nonlinear systems in chaos dynamic,
ee Hunt et al. (1989) and Lavrenčič et al. (2020). Because they are primarily governed by geometric/material nonlinearities, they
re almost impossible to predict with linear bifurcation analysis. A typical example is the wrinkling of compressed cylinders, where
cylinder collapses to a far-from-trivial deformation state for which a multitude of possible deformation modes exists. The dynamic

volution of deformations together with geometric/material imperfections heavily impacts which locally stable energy minimum
ill be chosen, see Lavrenčič et al. (2020).

The first problem with analyzing the energy landscape of sub-critical bifurcation wrinkling, which is non-convex in an energy–
isplacement diagram, is the lack of robustness of the current numerical algorithms to find a stable equilibrium path as they quickly
et lost in the multitude of unstable equilibrium paths right after the bifurcation point. In the case of super-critical bifurcation
rinkling, most of the algorithms are at least able to find a stable equilibrium but are oblivious to the co-existing locally stable
ranches as the standard path-following techniques (Veldin et al., 2021) only search locally. In contrast, dynamic algorithms are
ble to find different solutions but do not provide a direct way to select the solutions with the lowest potential energy or a systematic
ay to analyze the energy landscape, see Lavrenčič et al. (2020). Furthermore, numerical analysis requires discretization, which
enerally introduces imperfections that nonphysically alter the potential energy landscape.

Experimentally, analyses of post-bifurcation are even more difficult as geometric/material imperfections largely affect the energy
andscape and promote certain modes while they suppress others. In the experiments, a virgin sample develops one of the locally
table deformation modes. The choice depends on the deformation path, loading rate, or initial imperfections; see Zavodnik et al.
2023). On the first try, the sample may plastically deform to some (rather small) extent, like in metal structures or in polymers, due
o chain settling, etc. This filters out many other locally stable minima and deepens the energy valley of the chosen mode. Because
f the changed energy landscape due to plasticity, the same original deformation mode develops after the unloading and reloading,
2

egardless of the fact that the loading path and imperfections may be different this time.
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Due to all these problems in numerical simulations and experiments, the existence of a multitude of simultaneous locally stable
quilibrium solutions had only been found numerically by dynamic analysis of wrinkling in films on planar viscoelastic substrates,
ee Matoz-Fernandez et al. (2020) and Zavodnik et al. (2023). It was shown in these studies that during the deformation evolution,
he rate of loading temporarily affects the potential energy landscape and can steer the deformations into different final locally
table states, divided by the energy barriers, of which the origin is not known yet — but is the focus of this study. The choice of the
eformation state is, therefore, heavily affected by the whole evolution of the deformation pattern together with the perturbation
orces and imperfections. The second problem with the analysis of such structures is that the stable equilibrium states differ in the
‘degree of stability’’. Therefore to be able to choose the equilibrium states with low potential energy and large surrounding energy
arriers, which are likely to be chosen, the whole energy landscape has to be analyzed. Due to a large number of solutions and
geometric and/or material) nonlinearities, this is extremely hard and time-consuming when using brute-force numerical analysis.

systematic reduction of dimensionality of the analyzed system is therefore required to analyze the energy landscape globally and
o find the locally stable equilibrium states, which are likely to be chosen by a system.

To tackle the mentioned challenges in the post-bifurcation analysis of wrinkling structures, we first focus on the analysis of a
ather simple prototypical example: the wrinkling of an elastic film on a planar nonlinear elastic substrate. We set up an analytical
nd semi-analytical toy model based on Euler–Bernoulli beam assumptions and assuming finite displacements and finite rotations in
odeling the film. This reduces the complexity of the problem and enables a systematic analysis of the post-bifurcation deformation
atterns and the energy landscape. With the help of our theory, numerical simulations, and experiments, we analyze how different
ypes of nonlinearities (symmetric/unsymmetric in tension and compression that come from either the film compressibility or the
ubstrate nonlinearity) affect the energy landscape, determine whether the system has a sub- or super-critical post-bifurcation regime,
nd influence the most locally stable deformation patterns. Furthermore, we (1) explain why the post-bifurcation deformation
atterns in the super-critical wrinkling are stable far into the post-bifurcation regime, (2) explain the multistability observed
n Zavodnik et al. (2023), (3) explain the occurrence of different deformation patterns, which are unattainable by purely elastic
ystems, such as first observed in Matoz-Fernandez et al. (2020), (4) systematically analyze the energy barriers in-between locally
table states and how they are affected by initial imperfections, (5) explain the loss of periodic symmetry in sub-critical wrinkling,
nd (6) show/explain the loss and recovery of periodic pattern symmetry in experiments.

The rest of the paper is organized as follows: in Section 2, a beam theory reduced by incorporating Euler–Bernoulli beam
ssumptions is presented. In Section 3, the effects of nonlinearities on deformation patterns, such as period doubling, energy barrier
ue to nonlinearity, and deformation localization/periodicity, are presented. Moreover, the influence of initial imperfections on
he energy landscape is analyzed using our theory, numerical simulations, and experiments. Relevance and the future outlook are
iscussed in Conclusions.

. Theoretical formulation of the problem

We first derive a theory of deformations for thin beams under the Euler–Bernoulli assumptions that allow for the normal (bending
and membrane) strains while neglecting the shear strains. Within these constraints, the theory is suitable for large displacement
analysis of thin beams under small strain. To simulate the effects of the substrate to which the film (which we model as a beam)
adheres, we prescribe effective normal and tangential external loads, which depend on the deformation of the film. The film is
subjected to prescribed membrane strains due to growth or swelling.

2.1. Large displacement theory of an Euler–Bernoulli beam on a nonlinear substrate

The equilibrium equations for a thin beam in space are (see, e.g., Antman, 1973):

𝑴 ′(𝑠) + (𝒓(𝑠) × 𝑭 (𝑠))′ + 𝒓(𝑠) × 𝒇 (𝑠) = 0,

𝑭 ′(𝑠) + 𝒇 (𝑠) = 0,
(1)

where vector 𝑴 is an internal moment, 𝑭 is an internal force, 𝒇 denotes the outer distributed forces, 𝒓 denotes the position vector,
while 𝑠, 𝑠 ∈ [0, 𝑙], denotes the natural (arc-length) parameter of the beam in the current configuration. The current length of the
beam is denoted as 𝑙, while the reference length is denoted as 𝑙0 = 𝑙∕𝜆, with 𝜆 being the stretch due to growth, which is a load
parameter in our case. The prime ( )′ ∶= 𝑑( )∕𝑑𝑠 denotes derivation with respect to 𝑠. By plugging Eq. (1)2 into Eq. (1)1, and
differentiating, we obtain the following system of equations:

𝑴 ′′(𝑠) + 𝒕′(𝑠) × 𝑭 (𝑠) − 𝒕(𝑠) × 𝒇 (𝑠) = 0,

𝑭 ′(𝑠) + 𝒇 (𝑠) = 0,
(2)

where 𝒕(𝑠) = 𝒓′(𝑠) is a unit tangent vector. We adopt the Frenet–Serret frame with the tangent 𝒕(𝑠), normal 𝒏(𝑠) and a binormal 𝒃(𝑠),
where Frenet–Serret formulas narrate 𝒕′(𝑠) = 𝜅(𝑠)𝒏(𝑠), 𝒏′(𝑠) = −𝜅(𝑠)𝒕(𝑠) + 𝜏(𝑠)𝒃(𝑠) and 𝒃′(𝑠) = −𝜏(𝑠)𝒏(𝑠). Here, 𝜅 is the curvature, and

is the torsion of the space curve.
We consider a planar problem, which means that 𝜏 = 0 and the binormal vector 𝒃 is a constant unit out-of-plane vector. The

nternal moment, internal force, and the distributed external force can all be written in this frame as (𝑴) = (0, 0,𝑀)T, (𝑭 ) = (𝑁,𝑄, 0)T
T

3

nd (𝒇 ) = (𝑓𝑡, 𝑓𝑛, 0) . Here, 𝑁 is the normal section force, 𝑄 the tangential section force, and 𝑓𝑡 and 𝑓𝑛 the tangential and normal
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components of the distributed outer forces that act on the beam, respectively. Due to the choice of the frame (𝒕(𝑠)) = (1, 0, 0)T,
(𝒏(𝑠)) = (0, 1, 0)T and both equations in Eqs. (2) can be rewritten as

𝑀 ′′(𝑠) +𝑁(𝑠)𝜅(𝑠) − 𝑓𝑛(𝑠) = 0 (3)

and
𝑁 ′(𝑠) − 𝜅(𝑠)𝑇 (𝑠) + 𝑓𝑡(𝑠) = 0,

𝑇 ′(𝑠) + 𝜅(𝑠)𝑁(𝑠) + 𝑓𝑛(𝑠) = 0.
(4)

In further derivations only Eq. (4)1 will be used and the term 𝜅(𝑠)𝑇 (𝑠) will be neglected, as the product is rather small compared to
𝑁 ′(𝑠) + 𝑓𝑡(𝑠) for moderately curved beams.

Now, according to the Euler–Bernoulli beam theory, the shear deformation is negligible, and therefore, the tangential section
force can be calculated from Eq. (4)2 and is not needed to calculate the deformation. Furthermore, according to the Euler–Bernoulli
beam theory, the bending moment is proportional to the change of curvature. Without any curvature in the initial configuration,
the bending moment is 𝑀 = −𝐷𝜅, where 𝐷 is bending stiffness, more specifically 𝐷 = 𝐸ℎ3∕(12(1− 𝜈2)) in a plane strain case, where
ℎ, 𝐸 and 𝜈 are the thickness of the beam, Young’s modulus and Poisson’s ratio, respectively, Lifshitz et al. (1986). Furthermore,
the curvature can be expressed as the rate of change of the tangent vector, 𝜅 = 𝜑′(𝑠). Finally, the equilibrium equations can be
expressed in terms of the rotation of the tangent 𝜑(𝑠) and the inner normal membrane force 𝑁(𝑠),

𝐷𝜑′′′(𝑠) −𝑁(𝑠)𝜑′(𝑠) + 𝑓𝑛(𝜑(𝑠)) = 0,

𝑁 ′(𝑠) + 𝑓𝑡(𝜑(𝑠)) = 0.
(5)

We will consider cases of nearly incompressible and incompressible beam. Euler–Bernoulli type beams are usually considered
incompressible, especially when they are subjected only to transverse loads because deformation modes other than bending can
be neglected. In our case, the beam is primarily subjected to membrane forces that can cause some considerable membrane strains
even if the membrane stiffness is relatively large compared to the bending stiffness due to the effect of the substrate. Therefore, in
the case of a nearly incompressible beam, the relation between the membrane force 𝑁(𝑠) and the membrane strain of the beam can
be modeled using a linear relation

𝑁(𝑠) = 𝐶(𝑢′(𝑠) + 1∕𝜆 − cos𝜑(𝑠)). (6)

Here, 𝑢(𝑠) is the tangential displacement of the beam at 𝑠, 𝐶 = 𝐸ℎ∕(1 − 𝜈2) is the membrane stiffness of the film, and 𝑢′(𝑠) + 1∕𝜆 −
cos𝜑(𝑠) =∶ 𝜀long is the longitudinal strain of the beam.

Comparing membrane and bending stiffnesses that ∼ ℎ and ∼ ℎ3, respectively, reveals that bending of thick beams severely
penalizes the strain energy, which means that the membrane strains considerably increase its share in the total strain energy and
that membrane strains are therefore not negligible. However, the substrate can suppress them considerably. For example, to obtain
a certain number of wrinkles the substrate stiffness has to increase with increasing thickness. In thick beams this can go so far that
the stiffness of the substrate becomes comparable to the membrane stiffness of the beam so that the substrate completely suppresses
the tangential displacements of the beam, 𝑢(𝑠) = 0. This leads to 𝑁(𝑠) = 𝐶(1∕𝜆 − cos𝜑(𝑠)).

On the other hand, if the beam is thin, one can consider it incompressible and assume that the substrate shear tractions are
negligible 𝑓𝑡 = 0 compared to the membrane forces 𝑁(𝑠). Therefore, Eq. (5)2 reduces to 𝑁 ′(𝑠) = 0 and 𝑁(𝑠) = 𝑐𝑜𝑛𝑠𝑡. = −𝐹 . From
his, the tangential displacements can be evaluated as 𝑢(𝑠) = ∫ 𝑠

0 (cos𝜑(𝑠) − 1∕𝜆) 𝑑𝑠 and since in a periodic deformation pattern 𝑢(0) = 0
nd 𝑢(𝑙) = 0, with 𝑙 being the length of the film, we obtain the following incompressibility constraint,

∫

𝑙

0
cos𝜑(𝑠)𝑑𝑠 − 𝑙

𝜆
= 0. (7)

For numerical calculations, it is easier to implement the compressible beam theory (which does not include any constraints) rather
than the incompressible beam theory, in which the finite beam length requirement from Eq. (7) is given as a hard constraint in the
strain energy optimization problem.

2.2. The role of the substrate in wrinkling

We consider the substrate to affect the beam as the normal stress 𝑓𝑛 and the tangential stress 𝑓𝑡. In the case of the incompressible
beam theory we neglect 𝑓𝑡, while in the case of the compressible beam theory we assume 𝑓𝑡 is such that it prevents tangential film
deformations 𝑢(𝑠) = 0.

We further assume that the substrate is made of an incompressible (Hookean) material with a linear relation between stress and
strain and that the deformation pattern is periodic. As shown by Allen (1969), Chen and Hutchinson (2004), Audoly and Boudaoud
(2008) and Brau et al. (2011) expansion of the vertical displacement 𝑤 into a Fourier series, 𝑤(𝑠) =

∑∞
𝑗=1 𝑤𝑗 cos(𝑘𝑗𝑠), leads to the

analytical solution for the normal traction 𝑓𝑛(𝑠) = 2𝜇
∑∞

𝑗=1 𝑘𝑗𝑤𝑗 cos(𝑘𝑗𝑠). Using the small strain theory, where 𝜑(𝑠) ≈ 𝑤′(𝑠), and
Fourier series expansion of the rotation 𝜑, 𝜑(𝑠) = ∑∞

𝑗=1 𝜑𝑗 sin(𝑘𝑗𝑠), yields 𝜑(𝑠) ≈ −
∑∞

𝑗=1 𝑤𝑗𝑘𝑗 sin(𝑘𝑗𝑠). This means that 𝜑𝑗 ≈ −𝑤𝑗𝑘𝑗 .
Using the known trigonometric identity cos(𝑘𝑗𝑠) = −𝑖 sin(𝑘𝑗𝑠), where 𝑖 is the imaginary unit, gives the normal traction with respect
to 𝜑𝑗 , rather than to 𝑤𝑗 , as 𝑓𝑛(𝑠) ≈ 2𝜇

∑∞
𝑗=1 𝜑𝑗 𝑖 sin(𝑘𝑗𝑠). Now, the expression for 𝑓𝑛 can be written in terms of rotations as

𝑓 (𝑠) ≈ 2𝜇𝑖𝜑(𝑠). (8)
4
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Fig. 1. Illustration of the phase shift between reaction force and rotation. (a) The normal reaction stresses 𝑓𝑛(𝑠) are proportional to rotation 𝜑(𝑠), but in phase
ith vertical displacements 𝑤(𝑠). (b) For large deformations, the phase shift can be denoted by 𝑖; therefore, 𝑓𝑛(𝑠) ≈ 2𝜇𝜑(𝑠 + 𝑃∕4) = 2𝜇𝑖𝜑(𝑠).

Fig. 2. Nonlinear response of a substrate. (a) Symmetric with stiffening (𝛽 > 0) or softening (𝛽 < 0). (b) Asymmetric with stiffening in tension and softening
n compression (𝛼 > 0, purple curve), and vice-versa (𝛼 < 0, red curve). Coefficients 𝛼, 𝛽 come from a truncated Taylor series expansion of the response of the

substrate, see Eq. (9).

Note that the normal tractions depend on the magnitude of 𝜑(𝑠) one quarter shifted, which means they are in phase with 𝑤(𝑠).
his is denoted by multiplication with 𝑖, which can be summarized in 𝑓𝑛(𝑠) ≈ 2𝜇𝜑(𝑠 + 𝑃∕4) = 2𝜇𝑖𝜑(𝑠), where 𝑃 is the period, and

llustrated in Fig. 1(a) and (b).
Due to the slightly modified formulation of the beam theory presented above, the problem of wrinkling can be solved on the

evel of rotations 𝜑(𝑠). Note that this way the relation between the traction forces and the rotation is linear and simpler than the
lassical description in terms of 𝑤𝑖 given above. It also turns out to be more accurate within the proposed assumptions even though
t is linear. This is because in the incompressible elasticity the connection between the rotation 𝜑 and the strains is significantly less
onlinear than the connection between vertical displacements 𝑤 and the strains, see Fosdick and Schuler (1969).

In the following deliberations we do not differentiate between the geometrically, materially (or combined) caused stiffening or
oftening effects in terms of force-rotation. We will refer to these responses as effective stiffening or effective softening. The following

cases will be studied:

1. Effective softening versus effective stiffening, as shown in Fig. 2(a) with a green and dark yellow curve, respectively, and
2. asymmetric versus symmetric response in tension and compression. In this paper, we only use an asymmetric response due

to effective stiffening in one and effective softening in the other direction, as opposed to the asymmetric response that would
arise due to different tangent stiffness for compression and for tension. The asymmetries we consider are displayed in Fig. 2(b)
with red and purple, while symmetric nonlinearity is shown in Fig. 2(a) with green and dark yellow curves. The linear
symmetric response is shown in blue.

In the next sections, we aim to explore how these different fundamental nonlinearity types cause the energy barriers between distinct
deformation modes, the number of locally stable deformation states, the occurrence of periodic/localized deformation patterns,
spatially-chaotic deformation patterns, and period doubling.

It was shown by Brau et al. (2011) that the substrate stress-deformation characteristic asymmetric in tension and compression
causes period-doubling bifurcation, a secondary symmetry breaking of the pattern at large deformation. In their study, the nonlinear
response of the substrate emanated purely from geometry (deformations) as it was based on a St. Venant-Kirchhoff material law,
which describes the linear relationship between stress and strain states.
5
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The period doubling, due to asymmetry in tension and compression, occurs only at relatively large loads of wrinkling systems.
owever, we will show that the nonlinear response that is symmetric in tension and compression, illustrated in Fig. 2(a),

tabilizes/destabilizes the deformation pattern and causes its other qualitative changes much earlier, right at the onset of wrinkling.
o capture the essential effects that follow from the nonlinearity, we will consider a substrate’s response as a truncated Taylor series
xpansion

𝑓𝑛(𝜑(𝑠)) ≈ 2𝜇𝑖(𝜑 + 𝛼(𝜑2 − ⟨𝜑2
⟩) + 𝛽𝜑3), (9)

where parameter 𝛼, 𝛼 ∈ R, characterizes the asymmetry in the nonlinear response in tension and compression, while 𝛽 characterizes
the effective stiffening and softening response when 𝛽 > 0 and 𝛽 < 0, respectively, see Fig. 2. The brackets ⟨ ⟩ ∶= ∫ 𝑙

0 ( )𝑑𝑠∕𝑙 denote
averaging along the beam — the idea results from the fact that the cumulative stress of the substrate has to be ∫𝑙 𝑓𝑛𝑑𝑠 = 0, meaning
⟨𝑓𝑛⟩ = 0.

Furthermore, we will show that the membrane strains of the beam cause symmetric nonlinearities in compression and tension
and have a similar role to that of the substrate’s symmetric nonlinearity due to effective stiffening. We will show that both of them
determine the occurrence of either localized or a periodic uni-modal deformation pattern. We will also explain exactly how the
symmetric nonlinearities cause energy barriers between the meta-stable deformation modes.

3. Results and discussion

We start our theoretical investigation at the onset of wrinkling. The case of super-critical bifurcation can be analyzed via a
linear bifurcation analysis of Eq. (5)1, which yields a classical result – a single uni-modal harmonic deformation mode in the
deformation pattern. We assume that at the onset of wrinkling, the membrane force is constant 𝑁(𝑠) = −𝐹 and the reaction of
the substrate is linear 𝑓𝑛 = 2𝜇𝑖𝜑(𝑠). Solving the linear eigenvalue problem 𝐷𝜑′′′(𝑠) + 𝐹𝜑′(𝑠) − 2𝜇𝑖𝜑(𝑠) = 0, using a harmonic model
function 𝜑(𝑠) = 𝛷 exp (𝑖𝑘𝑠) yields a classical formula for the critical force 𝐹 = 𝐷𝑘2 + 2𝜇∕𝑘, which depends on the eigenmode (wave
umber) 𝑘 = 𝜋𝑛∕𝑙, where 𝑛 is the number of wrinkles. The structure acquires the lowest energy eigenmode that is permitted by
he boundary conditions, which usually means that the number of wrinkles 𝑛 must be an integer 𝑘 = 𝜋𝑛∕𝑙. This lowest energy
igenmode corresponds to the lowest non-trivial (nonzero) critical force 𝐹 . In the case of an infinitely long structure, where the
oundary conditions do not deny any eigenmodes, the lowest energy deformation mode is acquired by finding the mode with
inimal membrane force using 𝑑𝐹∕𝑑𝑘 = 0, from where

𝑘inf
cr = 3

√

𝜇∕𝐷, (10)

while in the structures of finite length, the lowest energy eigenmode 𝑘fin
cr , which has (half/)integer number of wrinkles, can be found

close to 𝑘inf
cr . With this at hand, the amplitude can be calculated from the incompressibility constraint given by Eq. (7). It is surprising

that – at least for the case of super-critical wrinkling – even linear analysis gives rather good results for a system that undergoes
moderately large deformations. In fact, as seen from the experiments by Brau et al. (2011) and simulations by Cao and Hutchinson
(2012), a uni-modal deformation pattern globally minimizes the potential energy in the moderate range of deformations. As we will
show next, this is the result of the stiffening nonlinearity in the system.

3.1. Nonlinear wrinkling analysis

In beam equilibrium in Eqs. (5), we assume that the normal component of the substrate traction is given in terms of a third-degree
polynomial, see Eq. (9) and a membrane force in Eq. (6). We also approximate the quantities cos𝜑 ≈ 1 − 𝜑2∕2 and 1∕𝜆 ≈ 1 − 𝜀,
while truncating the higher order terms. We approximate the membrane strain of the film by 𝜀long ≈ 𝑢′(𝑠) − 𝜀 + 𝜑2∕2, where 𝜀 is a
prescribed growth of the film, which is the load parameter in our theory. For the sake of simplicity, we will consider 𝑓𝑡 = 0 in the
incompressible beam case, as justified in Huang et al. (2005), or 𝑢(𝑠) = 0, for the compressible beam case. Because we are mainly
interested in qualitatively accurate results, we assume 𝜈 = 0.5, although it was shown by Huang et al. (2005) that this will lead to
an approximately 10% error. Considering all that, the approximated beam equilibrium equations are now

𝐷𝜑′′′(𝑠) + 𝐶
(

𝑢′(𝑠) − 𝜀 + 1
2
𝜑2

)

𝜑′(𝑠) − 2𝜇𝑖(𝜑 + 𝛼(𝜑2 − ⟨𝜑2
⟩) + 𝛽𝜑3) = 0,

𝑁 ′(𝑠) = 𝐶
(

𝑢′(𝑠) − 𝜀 + 1
2
𝜑2

)′
= 0.

(11)

In the case of an incompressible beam both equilibrium equations apply, and the second can be solved as 𝑁(𝑠) = 𝑐𝑜𝑛𝑠𝑡. = −𝐹 and
(𝑠) can be integrated directly. The nonlinear system of ODEs can for instance be solved numerically, with the boundary conditions
(0) = 𝜑(𝑙) = 𝜑′′(0) = 𝜑′′(𝑙) = 0 and 𝑁 ′(0) = 𝑁 ′(𝑙) = −𝐹 , where 𝐹 is an unknown that can be calculated from the boundary
onditions. The amplitude of the deformation pattern can be calculated from the incompressibility constraint or the membrane
quilibrium. This way, the boundary value problem (BVP) is well posed and could be solved using, e.g., the shooting method.

In the compressible beam case, only the first equation from Eq. (11) applies, with 𝑢(𝑠) = 0, while 𝑁(𝑠) can be calculated from
q. (6).

We find that it advantageous to solve the BVP using the Fourier series as a model function (spectral method), which satisfies the
oundary conditions naturally,

𝜑(𝑠) =
∞
∑

𝜑𝑖(𝑠) =
∞
∑

𝛷𝑖 sin(𝑘𝑖𝑠). (12)
6

𝑖=1 𝑖=1
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Here, 𝑘𝑖 = 𝜋𝑖∕𝑙 are wave numbers, which are discrete values that satisfy the aforementioned boundary conditions, and 𝛷𝑖 are
the amplitudes of the deformation modes. This form of solution is especially well suited, when assuming no imperfections and a
super-critical post-bifurcation. Only a single deformation mode is present at the onset of wrinkling, so it presents a way to make
analytical predictions about the energy landscape.

To solve the system of ODEs in Eqs. (11), we first develop a potential energy functional for which this system is its first variation.
Introducing function 𝜗, 𝜗(𝑠) = ∫ 𝜑(𝑠)𝑑𝑠, which is in the small strain theory the same as the vertical displacement 𝑤, integrating
Eq. (11)1 first with respect to 𝛿𝜗 = 𝛿 ∫ 𝜑(𝑠)𝑑𝑠 and then along the length of the beam, yields the following potential

𝛱 = ∫

𝑙

0

(

𝐷
2
𝜑′(𝑠)2 + 𝐶

2

(

𝑢′(𝑠) − 𝜀 +
𝜑(𝑠)2

2

)2

+ 2𝜇𝑖∫

𝜗

0

(

𝜑 + 𝛼
(

𝜑2 − ⟨𝜑2
⟩

)

+ 𝛽𝜑3) 𝛿𝜗

)

𝑑𝑠. (13)

In the case of incompressibility, the constant 𝐶 → ∞ leads to the condition in Eq. (7), which can be rewritten to ∫ 𝑙
0
(

𝜀 − 𝜑2∕2
)

𝑑𝑠 = 0
using Taylor series expansion. For the case of incompressibility (𝑁(𝑠) = 𝑐𝑜𝑛𝑠𝑡. = −𝐹 ) the total energy can be replaced by

𝛱 incomp = ∫

𝑙

0

(

𝐷
2
𝜑′(𝑠)2 − 𝐹

(

−𝜀 +
𝜑(𝑠)2

2

)

+ 2𝜇𝑖∫

𝜗

0

(

𝜑 + 𝛼
(

𝜑2 − ⟨𝜑2
⟩

)

+ 𝛽𝜑3) 𝛿𝜗
)

𝑑𝑠, (14)

where the term ∫ 𝑙
0 𝐹

(

−𝜀 + 𝜑(𝑠)2∕2
)

𝑑𝑠 is a Lagrange multiplier 𝐹 multiplied by the incompressibility constraint. Using the fact that
𝛿𝜗 = 𝛿 ∫ 𝜑(𝑠)𝑑𝑠 = −

∑∞
𝑖=1 𝛿𝛷𝑖∕𝑘𝑖 cos(𝑘𝑖𝑠) = 𝑖

∑∞
𝑖=1 𝛿𝛷𝑖(𝑠)∕𝑘𝑖 sin(𝑘𝑖𝑠) (since cos(𝑘𝑖𝑠) = −𝑖 sin(𝑘𝑖𝑠)), we see that the total energy density

per unit length in the incompressible case  incomp = 𝛱 incomp∕𝑙 can be given as

 incomp =
∞
∑

𝑖=1

(

𝐷
4
𝑘2𝑖𝛷

2
𝑖 − 𝐹

(

−𝜀 +
𝛷2

𝑖
4

)

+ 2𝜇

(

1
4
𝛷2

𝑖
𝑘𝑖

+ 𝛼
∞
∑

𝑗=1

𝑗
∑

𝑘=1

𝐶𝑖𝑗(𝑘−𝑗+1)(𝑙−𝑘+1)

𝑘𝑖 ∫

𝛷𝑖

0
𝛷𝑗𝛷𝑘−𝑗+1𝛿𝛷𝑖

+𝛽
∞
∑

𝑗=1

𝑗
∑

𝑘=1

𝑘
∑

𝑙=1

𝐷𝑖𝑗(𝑘−𝑗+1)(𝑙−𝑘+1)

𝑘𝑖 ∫

𝛷𝑖

0
𝛷𝑗𝛷𝑘−𝑗+1𝛷𝑙−𝑘+1𝛿𝛷𝑖

))

.

(15)

The harmonic correlation coefficients 𝐶𝑖𝑗𝑘 and 𝐷𝑖𝑗𝑘𝑙 can be computed as 𝐶𝑖𝑗𝑘 = ∫ 𝑙
0 sin(𝑘𝑖𝑠) sin(𝑘𝑗𝑠) sin(𝑘𝑘𝑠)𝑑𝑠∕𝑙 and 𝐷𝑖𝑗𝑘𝑙 =

∫ 𝑙
0 sin(𝑘𝑖𝑠) sin(𝑘𝑗𝑠) sin(𝑘𝑘𝑠) sin(𝑘𝑙𝑠)𝑑𝑠∕𝑙.

In the case of a compressible beam, where we assume 𝑢(𝑠) = 0, the total elastic strain energy density per unit length  = 𝛱∕𝑙
can be computed from (13) as

 =
∞
∑

𝑖=1

(

𝐷
4
𝑘2𝑖𝛷

2
𝑖 +

𝐶
2

(

𝜀2 −
𝜀𝛷2

𝑖
2

+ 1
4

∞
∑

𝑗=1

𝑗
∑

𝑘=1

𝑘
∑

𝑙=1
𝐷𝑖𝑗(𝑘−𝑗+1)(𝑙−𝑘+1) ∫

𝛷𝑖

0
𝛷𝑗𝛷𝑘−𝑗+1𝛷𝑙−𝑘+1𝛿𝛷𝑖

)

+2𝜇

(

1
4
𝛷2

𝑖
𝑘𝑖

+ 𝛼
∞
∑

𝑗=1

𝑗
∑

𝑘=1

𝐶𝑖𝑗(𝑘−𝑗+1)(𝑙−𝑘+1)

𝑘𝑖 ∫

𝛷𝑖

0
𝛷𝑗𝛷𝑘−𝑗+1𝛿𝛷𝑖

+𝛽
∞
∑

𝑗=1

𝑗
∑

𝑘=1

𝑘
∑

𝑙=1

𝐷𝑖𝑗(𝑘−𝑗+1)(𝑙−𝑘+1)

𝑘𝑖 ∫

𝛷𝑖

0
𝛷𝑗𝛷𝑘−𝑗+1𝛷𝑙−𝑘+1𝛿𝛷𝑖

))

.

(16)

Variation of Eqs. (16) and (15) with respect to 𝛷𝑖 yields a so-called spectral method approximation, which will later be used to
solve our system in Section 3.4. Nonetheless, we first use the total energy density in Eq. (16) to qualitatively analyze the energy
landscape with respect to 𝛷𝑖.

3.2. Period doubling due to quadratic-type substrate nonlinearity

To validate our theory, we first analyze the already well-researched topic of period-doubling bifurcation in wrinkling. To reiterate,
this phenomenon is the result of an asymmetric stress response of the substrate in tension and compression (see Fig. 2(a)). In the
work of Brau et al. (2011), the St. Venant-Kirchhoff material model was used, which describes a linear relationship between stress
and strain and employs Green–Lagrange strain tensor, which leads to a quadratic nonlinear theory that is asymmetric because it
exhibits stiffening in tension and softening in compression.

Since the deformation patterns found at the immediate and moderate post-bifurcation response are similar, Brau et al. (2011),
and the immediate post-bifurcation can be obtained from the linearized analysis of Eq. (15) or (16), i.e. as a harmonic solution
𝜑(𝑠) =

∑∞
𝑖=1 𝛷𝑖 sin(𝑘𝑖𝑠), we also use it in the moderate post-bifurcation at this point. We take two deformation modes 𝑘𝑛 = 𝑘 and

𝑘2𝑛 = 2𝑘 and use the nonlinear theory only for assessing the stability of the solution. Here, 2𝑘 = (𝜇∕𝐷)1∕3 is the wavenumber of the
eformation mode that minimizes the strain energy at the onset of wrinkling for an infinitely long beam. We redefine the amplitudes
𝑛 = −𝐴 and 𝛷2𝑛 = −𝐵, while keeping 𝛽 = 0 for the sake of simplicity. Similarly, we can assume for the incompressible beam that
→ ∞, which then assures that ∫ 𝑙

0
(

𝜀 − 𝜑2∕2
)

𝑑𝑠 = 0 or equivalently 4𝜀 = 𝐴2 + 𝐵2. With these assumptions, we obtain the total
train energy density of the incompressible beam given in Eq. (15) for the two deformation modes

 = 𝐷
2

(

𝐴2𝑘2

2
+ 4𝐵2𝑘2

2

)

+
2𝜇
𝑘

(

1
2

(

𝐴2

2
+ 𝐵2

4

)

− 𝛼
4
𝐴2𝐵

)

. (17)

Note that the energy consists of quadratic bending and substrate energy contributions due to linear material laws and also a
cubic contribution −𝛼𝐴2𝐵∕4, which comes from the quadratic nonlinearity of the substrate. At the onset of wrinkling, the primary
7
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deformation mode with the wavenumber 2𝑘 has the amplitude 𝐵 =
√

4𝜀 due to the incompressibility constraint, while the secondary
ode is not present, i.e., 𝐴 = 0, since its increase would increase the bending and linear part of substrate energy more than it
ould decrease the nonlinear substrate energy through −𝛼𝐴2𝐵∕4. However, if the load 𝜀 exceeds a secondary bifurcation strain

2nd = (32𝛼∕5)−2 the Hessian determinant of the Lagrangian  incomp becomes negative, which suggests a period-doubling saddle
point bifurcation. This result coincides with the results of Brau et al. (2011). Our theory suggests that after 𝜀 > (32𝛼∕5)−2 the
increase in amplitude 𝐴 decreases the energy due to the nonlinear part of the substrate energy −𝛼𝐴2𝐵∕4 more than it increases the
linear bending and substrate energies. Therefore, it is energetically more favorable to have a combination of the deformation modes
𝑘 and 2𝑘 with amplitudes 𝐴 and 𝐵, rather than to have a single deformation mode.

More intuitively, the substrate softens with compression and strengthens with tension. Therefore, rather than equally tensioning
one half and compressing the other half of the surface of the substrate, as is the case with uni-modal deformation pattern, it is
energetically more efficient to only mildly tension a large area and to intensely compress a small area to likewise achieve an
equilibrium, but at minimal strain energy. This is achieved exactly by the composition of the modes with 2𝑘 and 𝑘 wavenumbers,
which manifests a period doubling in the physical space.

3.3. Energy barrier due to cubic-type nonlinearity

The period-doubling bifurcation causes large qualitative changes in deformation patterns only at the relatively late post-
bifurcation stage, at large loads 𝜀. In contrast, the nonlinearity symmetric in tension and compression that we are about to explore
only causes drastic qualitative changes if it is softening. However, both, the effective stiffening and the effective softening symmetric
nonlinearities (see Fig. 2) critically affect the strain energy landscape because they stabilize or destabilize the uni-modal deformation
patterns, respectively.

To obtain a basic insight into the energy landscape, we again first analyze some simple deformation patterns, which are the
solutions of the linear version of Eqs. (5) with 𝑓𝑡 = 0, while we use the nonlinear Eq. (16) to analyze stability. We assume the
solution is composed of a mixture of only two consecutive deformation modes: (𝑖) 𝑘𝑛 = 𝑘 = 𝜋𝑛∕𝑙 and (𝑖𝑖) 𝑘𝑛−1 = 𝑔 = 𝜋(𝑛−1)∕𝑙, where
he number of half-waves 𝑛 are integers, as allowed by the boundary conditions. We denote their amplitudes (real numbers due to
he boundary conditions) as 𝛷𝑛 = 𝐴 and 𝛷𝑛−1 = 𝐵. Considering this, the averaged total strain energy density in Eq. (16) over a
arge domain 𝑙 → ∞ yields

 = 𝐷
2

(

𝐴2𝑘2

2
+

𝐵2𝑔2

2

)

+ 𝐶
2

(

− 𝜀
2
(

𝐴2 + 𝐵2) + 3
32

(

𝐴4 + 4𝐴2𝐵2 + 𝐵4)
)

+ 2𝜇
(

1
2

(

𝐴2

2𝑘
+ 𝐵2

2𝑔

)

+
3𝛽
32

(

𝐴4

𝑘
+ 2𝐴2𝐵2

𝑘
+ 2𝐴2𝐵2

𝑔
+ 𝐵4

𝑔

))

.
(18)

This strain energy density form is central to our analysis of all the following phenomena and will be referred to throughout the rest
of the paper. Its arguments, i.e., amplitudes of the two modes 𝐴, 𝐵 and their wavenumbers 𝑘 and 𝑔, have to be chosen to minimize
the form. We can divide the strain energy form into well-known classical linear contributions (quadratic in terms of amplitudes 𝐴
and 𝐵 in strain energy) that govern the choice of deformation pattern wavenumber at the onset of wrinkling (but surprisingly also
later on) and its nonlinear contributions (quartic functions of the amplitudes 𝐴 and 𝐵 in terms of energy), which govern the stability
of deformation patterns, and are at the heart of our investigation.

To minimize the classical linear terms, which govern the onset of wrinkling, the amplitudes of the modes (𝐴 and 𝐵) have to
be such that they optimize the total strain energy. Because the membrane stiffness coefficient 𝐶 is much larger than the bending
and substrate coefficients 𝐷 and 𝜇, respectively, the amplitudes of the modes must primarily minimize the membrane strain energy.
Furthermore, because the membrane strain energy is so dominant, the amplitudes are often calculated directly from the beam
incompressibility constraint ∫ 𝑙

0
(

𝜀 − 𝜑2∕2
)

𝑑𝑠 = 0 or equivalently 4𝜀 = 𝐴2 + 𝐵2. This constraint gives the magnitude of wrinkling,
while the minimization of bending and (linear) substrate strain energy provides the share of the wrinkle magnitude each mode will
take. All modes release membrane energy from the system through −𝜀

(

𝐴2 + 𝐵2) ∕2, however at the expense of additional bending
energy 𝐷∕4

(

𝐴2𝑘2 + 𝐵2𝑔2
)

that penalizes large wavenumbers and substrate strain energy 𝜇
(

𝐴2∕𝑘 + 𝐵2∕𝑔
)

∕2 that penalizes small
wavenumbers. The optimal mode 𝑘𝑛∈Ropt = 3

√

𝜇∕𝐷 is, therefore, a compromise for releasing as much membrane energy as possible
while not raising neither too much bending, nor too much strain energy of the substrate. Without the integer restriction on the
number of half waves 𝑛 the deformation pattern is uni-modal with 𝑘𝑛∈Ropt = 3

√

𝜇∕𝐷 and the amplitude of angle 𝜑 is
√

4𝜀. If 𝑛 is an
nteger, then the optimal wavenumber is 𝑘𝑛∈Nopt = 𝜋𝑛int

opt∕𝑙, which can be found near 3
√

𝜇∕𝐷 and the amplitude of the angle 𝜑 is still
4𝜀.
In our nonlinear analysis, we first assume the optimal wavelength and magnitudes of wrinkles are the same as in the linear case

and use the nonlinear terms to analyze the stability of these solutions and the energy barriers between them. Therefore, we choose
our first mode to have the optimal wavenumber in view of the linear analysis with 𝑘 = 𝑘𝑛+1 = 𝑘𝑛∈Nopt = 𝜋𝑛opt∕𝑙 with integer 𝑛opt. This
optimal wavenumber 𝑘 = 𝑘𝑛∈Nopt can be found close to 3

√

𝜇∕𝐷. Then we choose our second mode to also obey the boundary condition’s
integer constraint on 𝑛 and to be a neighbor of the optimal one 𝑛opt but with one less half-wave 𝑔 = 𝑘𝑛−1 = 𝜋(𝑛opt − 1)∕𝑙. Provided

opt∕𝑙 is much larger than one, 𝑘 and 𝑔 are almost the same, 𝑘 ≈ 𝑔. This greatly simplifies the explanation of further analysis.
urthermore, we observe that although our strain energy in Eq. (16) includes asymmetric quadratic nonlinearity (cubic functions of
and 𝐵 in terms of strain energy) with coefficient 𝛼, it has vanished in Eq. (18) due to considering only two consecutive deformation
8

odes and energy density averaging. Therefore, we can focus on the terms from the symmetric cubic nonlinearity (quartic terms of



Journal of the Mechanics and Physics of Solids 191 (2024) 105774J. Zavodnik and M. Brojan

s
𝐴
s
s
d
i

s
d
p
a

t
t
c
d
e
p
𝐵
𝐴

d
i
w
𝑔
w

𝐴 and 𝐵) that remain. They arise due to (𝑖) the membrane strain energy of the beam in 3𝐶
(

𝐴4 + 4𝐴2𝐵2 + 𝐵4) ∕64 and (𝑖𝑖) due to
effective stiffening/softening of the substrate with 6𝜇𝛽

(

𝐴4∕𝑘 + 2𝐴2𝐵2∕𝑘 + 2𝐴2𝐵2∕𝑔 + 𝐵4∕𝑔
)

∕32, see Section 2.2 and Fig. 2(a).
With this in at hand, we can finally analyze the stability of the structure with the energy form given in Eq. (18), where the

ymmetric nonlinearities of both sources provide pure quartic terms 𝐴4 and 𝐵4, but most importantly they provide mixed terms
2𝐵2, which are the source of all of the phenomena we are covering. Provided the substrate is effective softening with sufficiently

mall 𝛽 (when 𝛽 < 0), such that the negative term 𝛽𝐴2𝐵2 of the substrate dominates over the positive terms 𝐴2𝐵2 of the membrane
trains, then the mixed deformation patterns (with both 𝐴 ≠ 0 and 𝐵 ≠ 0) have a lower strain energy than purely uni-modal
eformation patterns. Therefore, in general, softening promotes mixed, multi-modal deformation patterns in the modal space, which
s expressed as the localization of deformation in the physical space. This will be further explored in Section 3.4.

In contrast, provided 𝛽 > 0 or when the term 𝐴2𝐵2 dominates over the negative term of the substrate 𝛽𝐴2𝐵2, mixed deformation
tates (with 𝐴 ≠ 0 and 𝐵 ≠ 0) are penalized compared to the uni-modal deformation patterns. This suggests that a nonlinear
eformation stiffening system, either due to membrane strains or effective stiffening substrate, promotes uni-modal deformation
atterns even in a moderate or large deformation regime. This has also been seen but not explored more in depth in experiments
nd simulations in Brau et al. (2011) and Chen and Hutchinson (2004).

More importantly, positive terms 𝐴2𝐵2 provide an energy barrier between uni-modal deformation patterns. This is because the
ransition of the structure from one uni-modal state to another demands passing through higher energy mixed-modal states, where
he energy is higher due to 𝐴2𝐵2. The reason, that going through mixed states is necessary, is either due to beam incompressibility
onstraint 𝐴2 + 𝐵2 = 4𝜀, or due to the fact that in a compressible beam the membrane stiffness 𝐶 is usually large and even a small
eviation from 𝐴2 +𝐵2 − 4𝜀 = 0 leads to a large increase in energy. Therefore, going through a mixed state with additional 𝐴2𝐵2 is
nergetically more efficient, but still requires additional energy input to increase the energy during the transition. This is all true
rovided that 𝑔 ≈ 𝑘 so that the change from one sub-optimal state (e.g., 𝐴 = 0, 𝐵 =

√

4𝜀) to globally optimal state (e.g., 𝐴 =
√

4𝜀,
= 0) does not lower the linear bending and substrate energies so much, that they override the increase of energy due to the mixed
2𝐵2 terms.

For a more concrete mathematical description of the described energy barrier, consider an incompressible beam with 𝐶 → ∞
with the incompressibility constraint 𝐴2 + 𝐵2 = 4𝜀. With that, the energy functional in Eq. (18) loses a mixed energy term 𝐴2𝐵2

ue to membrane strain energy. However, because the effective stiffening (i.e., 𝛽 > 0) provides the same effect, no generality
s lost, while the energy barrier is easier to show. We assume that a deformation pattern under the incompressibility constraint
ith a constant prescribed membrane strain load 𝜀, evolves from a sub-optimal uni-modal deformation mode (𝐴 = 0, 𝐵 =

√

4𝜀,
= 𝜋(𝑛opt − 1)∕𝑙) to an optimal uni-modal deformation mode (𝐴 =

√

4𝜀, 𝐵 = 0, 𝑘 = 𝜋𝑛opt∕𝑙). For an easier display of the evolution
e introduce parametrization 𝐴 =

√

4𝜀 sin𝛩 and 𝐵 =
√

4𝜀 cos𝛩, which automatically satisfies the beam incompressibility constraint
4𝜀 = 𝐴2 +𝐵2. Furthermore, since the load 𝜀 is fixed, only one parameter 𝛩 = arctan(𝐴∕𝐵), which represents the share of each of the
two consecutive single deformation modes’ amplitudes, describes the evolution. For example at 𝛩 = 0 ⇒ 𝐵 =

√

4𝜀 and 𝐴 = 0 and at
𝛩 = 𝜋∕2 ⇒ 𝐵 = 0 and 𝐴 =

√

4𝜀. Introducing this change of variables to the total strain energy density in Eq. (18), yields bending
and substrate terms only, which are functions of the constant 𝜀 and the share parameter 𝛩:

(𝛩) =𝐷𝜀
(

𝑔2 cos2 𝛩 + 𝑘2 sin2 𝛩
)

+ 2𝜇𝜀
(

cos2 𝛩
𝑔

+ sin2 𝛩
𝑘

)

+ 6𝛽𝜀2𝜇
(

cos4 𝛩
2𝑔

+ cos2 𝛩 sin2 𝛩
𝑔

+ cos2 𝛩 sin2 𝛩
𝑘

+ sin4 𝛩
2𝑘

)

.
(19)

In Fig. 3, the strain energy density  of uni-modal deformation modes with an integer number of half-waves 𝑛 is depicted by dots.
Between the integer values of 𝑛, we plot the strain energy (given by Eq. (19)) of the deformation pattern, which is composed of a
mixture of the consecutive integer modes, parameterized by 𝛩.

Inset (i) shows a close-up of the transition from the case with 6 half-waves to 7 half-waves in the effective stiffening case. Effective
stiffening (𝛽 > 0) – or equivalently membrane strain energy in thicker beams – causes an energy barrier between both uni-modal
deformation modes and, therefore, creates a multistable system with many locally stable deformation modes. This explains why in
the wrinkling of elastic film on visco-hyperelastic halfspace (Zavodnik et al., 2023) and in the wrinkling of viscoelastic plates (Matoz-
Fernandez et al., 2020) multiple final deformation states (unobtainable by the purely elastic deformations) were found. Due to the
energy barriers resulting from the aforementioned nonlinearities, these states might be local energy minima or states close to one,
which makes the evolution toward the lower (local) minimum extremely slow. This was the case in Zavodnik et al. (2023) where
both the compressibility of the film and the standard viscoelastic neo-Hookean substrate provided energy barriers and, therefore,
multistability, together with the observation of an extremely slow evolution from meta-stable to globally stable deformation patterns.
Inset (ii) in Fig. 3 shows that a linear substrate and the incompressible film exhibit no energy barrier between single deformation
modes. Finally, inset (iii) shows that in systems with softening substrates, a deformation pattern composed of many deformation
modes is energy minimizing, and uni-modal deformation patterns are not stable. Ultimately, the composition of multiple deformation
modes in the modal space means localization of deformation in the physical space. In general, softening behavior can also come
from geometric nonlinearity, such as in the buckling of spherical shells, where the deformation localizes (Hutchinson, 2016; Paulose
and Nelson, 2012; Vliegenthart and Gompper, 2011).

(The effect of initial imperfections on the energy barrier) The energy barrier due to a effective stiffening substrate or
membrane strains in the film can be largely affected by the initial imperfections or perturbation forces acting on the structure.
To show this, we assume that the structure is already winkled before deformation with initial wrinkles with the amplitude 𝐵0 and
9

sub-optimal wavenumber 𝑔 = 𝜋(𝑛opt − 1)∕𝑙. We define a relative difference between the length of the film and its projection, which
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Fig. 3. Elastic strain energy density landscape of finite length beam on a planar elastic substrate as a function of integer number of half-wave 𝑛, which is due
to boundary conditions. In between the integer values 𝑛, we assume that deformation patterns are a composition of consecutive 𝑛 and 𝑛+ 1 deformation modes.

his composition is parameterized by 𝛩 = arctan𝐴∕𝐵, the share parameters between consecutive mode’s amplitudes 𝐴 and 𝐵. Blue curves represent a effective
tiffening substrate with 𝛽 = 0.5, green curves a linear substrate with 𝛽 = 0 is linear, and orange curves a softening substrate with 𝛽 = −0.5. Here, with the ratio
𝜇𝑙2∕𝐷 = 20 000, the energetically optimal 𝑛 is 𝑛int

cr = 7, considering the integer constraint of 𝑛 due to boundary conditions, while without the boundary condition
onstraint 𝑛real

cr = 6.858. Zoom-in views of the segment represent the strain energy density: (i) Of a composition of uni-modal deformation modes 𝑛 = 6 and 𝑛 = 7
or effective stiffening substrate 𝛽 = 0.5. The three sub-insets in this insert show the deformation patterns of an isolated (uni-modal) 𝑛 = 6, 𝑛 = 7 mode, and a
omposed deformation mode. To evolve from the locally stable 𝑛 = 6 deformation mode into the globally energetically favorable 𝑛 = 7 deformation mode, the
eformation pattern has to become a composition of both modes due to the constraint 4𝜀 = 𝐴2 +𝐵2 and, therefore, pass through the energy barrier due to energy
erms due to nonlinear contribution 𝐴2𝐵2 which penalizes composed modes. (ii) In the case with a linear substrate with 𝛽 = 0, no energy barriers prevent the
ransition from uni-mode with 𝑛 = 6 to a uni-mode with 𝑛 = 7 half-waves. (iii) Finally, in the case of softening substrate with 𝛽 = −0.5, uni-modal deformation
tates are unstable, and the energetically favorable deformation pattern is composed of both consecutive uni-modes.

an be calculated as 𝜀0 = 𝐵2
0∕4. In the strain energy of the system given in Eq. (18) we replace the membrane strain energy with a

agrange multiplier and a beam incompressibility condition 𝜀 = (𝐴2 + (𝐵 + 𝐵0)2)∕4 − 𝐵2
0∕4 to obtain a system, which is equivalent

o Eq. (14) with two modes only. And since 𝜀0 = 𝐵2
0∕4 we obtain

 = 𝐷
2

(

𝐴2𝑘2

2
+

𝐵2𝑔2

2

)

+ 𝐹
(

(𝜀 + 𝜀0) −
𝐴2 + (𝐵 + 𝐵0)2

4

)

+ 2𝜇
(

1
2

(

𝐴2

2𝑘
+ 𝐵2

2𝑔

)

+
3𝛽
32

(

𝐴4

𝑘
+ 2𝐴2𝐵2

𝑘
+ 2𝐴2𝐵2

𝑔
+ 𝐵4

𝑔

))

,
(20)

Without initial imperfections 𝐵0, the system of equations that we obtain by searching for a minimum of the Lagrangian above would
be homogeneous, and 𝐹 would be unknown, but now, due to imperfection, 𝐹 is a load parameter. If we again apply 𝐴 =

√

4𝜀 sin𝛩
and 𝐵 =

√

4𝜀 cos𝛩, we obtain the following Lagrangian function

 =𝐷𝜀
(

𝑘2 sin2 𝛩 + 𝑔2 cos2 𝛩
)

+ 2𝜇𝜀
(

sin2 𝛩
𝑘

+ cos2 𝛩
𝑔

)

+ 6𝛽𝜀2𝜇
(

sin4 𝛩
2𝑘

+ cos2 𝛩 sin2 𝛩
𝑘

+ cos2 𝛩 sin2 𝛩
𝑔

+ cos4 𝛩
2𝑔

)

− 𝐹𝐵0

√

4𝜀 cos𝛩.

(21)

The last term −𝐹𝐵0
√

4𝜀 cos𝛩 makes the system of equations non-homogeneous and decreases the total strain energy of the structure,
specially of the same deformation mode, i.e., the same wavenumber 𝑔 as the imperfection. Note that the load parameter 𝐹 can be

calculated from 𝜀 only in equilibrium, where 𝜕∕𝜕𝛩 = 0 holds, and therefore, we parameterize the imperfection with 𝐹𝐵0 and not
with 𝐵 alone.
10
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Fig. 4. Normalized strain energy 𝑙2∕𝐷 from Eq. (21) as a function of parameter 𝛩, which determines the share two modes (in this particular case of geometric
and material parameters either 𝑛 = 6 or 𝑛 = 7). When 𝛩 = 0 the pattern is uni-modal with 𝑛 = 6, when 𝛩 = 𝜋∕2 the pattern is uni-modal with 𝑛 = 7, while 𝛩
in-between, the pattern is composed of both modes. First row shows that the increase in the prescribed membrane strain 𝜀, 𝜀 ∈ {0.02, 0.05, 0.1}, increases the energy
barrier between the two modes, while at the same time the increase in parameter 𝐹𝐵0 (𝐵0 measures the amplitude of the initial geometric imperfection) decreases
it or removes it completely (green curve in panel (b)). Similarly, the second row shows that the increase in effective stiffening coefficient 𝛽, 𝛽 ∈ {0.2, 0.4, 1},
increases energy barrier between the two modes, while parameter 𝐹𝐵0 decreases it or removes it completely (green curves in panels (e) and (f)).

Fig. 4 shows the strain energy calculated from Eq. (21) in relation to the share parameter 𝛩 describing the involvement of the
two modes with wavenumbers 𝑘 = 7𝜋∕𝑙 and 𝑔 = 6𝜋∕𝑙. This means if 𝛩 = 0 or equivalently 𝐵 =

√

4𝜀 + 𝐵2
0 − 𝐵0 this corresponds

o a uni-axial state 𝑛 = 6, while if 𝛩 = 0.5𝜋 or equivalently 𝐴 =
√

4𝜀 this corresponds to the uniaxial state 𝑛 = 7. Panel (a) in
ig. 4 shows the one dimensional energy landscape in terms of the strain energy as a function of 𝛩. One can observe from the
irst row, panels (a)–(c), that the increase in the prescribed membrane strain 𝜀, 𝜀 ∈ {0.02, 0.05, 0.1}, increases the energy barrier
etween the two modes, while at the same time the increase in parameter 𝐹𝐵0 (𝐵0 measures the amplitude of the initial geometric
mperfection) decreases it or removes it completely (green curve in panel (b)). Similarly, the second row shows that the increase in
ffective stiffening coefficient 𝛽, 𝛽 ∈ {0.2, 0.4, 1}, increases energy barrier between the two modes, while parameter 𝐹𝐵0 decreases

it or removes it completely (green curves in panels (e) and (f)).
(Deformation pattern composed from multiple modes) Until now, only deformation patterns consisting of two deformation

odes were considered to simplify the explanations. We will show that similar arguments can be extended to a case of multiple
odes. For the sake of simplicity, let us assume that the deformation pattern consists of only deformation modes of similar wrinkle
avenumbers 𝑘𝑖 ≈ 𝑘. Then using the incompressibility constraint of the film 4𝜀 =

∑∞
𝑖=1 𝛷

2
𝑖 , the total energy density in Eq. (16) can

be rewritten in terms of the load 𝜀 as

 ≈ 𝐷𝜀𝑘2 + 2𝜇 𝜀
𝑘
+ 2𝜇

3𝛽
2𝑘

⎛

⎜

⎜

⎜

⎝

𝜀2 + 𝑒𝑖𝑗𝑘𝑙
∞
∑

𝑖,𝑗,𝑘,𝑙=1
𝑖≠𝑙,𝑗≠𝑘

𝛷𝑖𝛷𝑗𝛷𝑘𝛷𝑙

⎞

⎟

⎟

⎟

⎠

. (22)

erms that depend only on load strain 𝜀 are independent of how the deformation is shared between the modes’ amplitudes 𝛷𝑖, and
herefore, they do not penalize or promote the deformation states composed of multiple modes. In contrast, terms 𝛷 𝛷 𝛷 𝛷 with
11
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coefficients 𝑒𝑖𝑗𝑘𝑙, which are all positive (not explicitly given for brevity), provide the energy barrier/valley depending on the sign of
. These terms are analogous to 𝛽𝐴2𝐵2 terms in Eq. (18) and with 𝛽 > 0 penalize or with 𝛽 < 0 promote mixed deformation modes.

Therefore, in general, uni-modal deformation patterns noticed in experiments in wrinkling of films on substrates, e.g., in our
experiments presented later in Fig. 5(a) or Brau et al. (2011), most likely originate from effective stiffening substrate and are
stabilized by the energy barriers. Conversely, multi-modal deformation patterns, which manifest as localization of deformation in
physical space, are probably caused by some sort of softening effect, e.g., as in our experiments shown in Fig. 5(b).

3.4. Uni-modal periodic vs. localized deformation pattern

To analyze how effective stiffening/softening in the substrate affects the distribution of deformation across the surface, we employ
our theory, numerical simulations, and experimental methods. In the potential energy density functional, Eq. (16), we vary the
amplitudes of the deformation modes to find fixed points, equivalent to static equilibriums with

𝛿(𝛷𝑖, 𝛿𝛷𝑖) =
∞
∑

𝑖=1

(

𝐷
2
𝑘2𝑖𝛷𝑖 + 𝐶

(

1
2

∞
∑

𝑗=1

𝑗
∑

𝑘=1

𝑘
∑

𝑙=1
𝐷𝑖𝑗(𝑘−𝑗+1)(𝑙−𝑘+1)𝛷𝑗𝛷𝑘−𝑗+1𝛷𝑙−𝑘+1 −

𝜀
2
𝛷𝑖

)

+2𝜇

(

1
2
𝛷𝑖
𝑘𝑖

+ 𝛼
∞
∑

𝑗=1

𝑗
∑

𝑘=1

𝐶𝑖𝑗(𝑘−𝑗+1)(𝑙−𝑘+1)

𝑘𝑖
𝛷𝑗𝛷𝑘−𝑗+1𝛿𝛷𝑖

+𝛽
∞
∑

𝑗=1

𝑗
∑

𝑘=1

𝑘
∑

𝑙=1

𝐷𝑖𝑗(𝑘−𝑗+1)(𝑙−𝑘+1)

𝑘𝑖
𝛷𝑗𝛷𝑘−𝑗+1𝛷𝑙−𝑘+1

))

𝛿𝛷𝑖 = 0.

(23)

For finding the combination of modes that constitute equilibrium, we first choose a sufficient range of modes 𝑘𝑖 = 𝜋𝑖∕𝑙, 𝑖 ∈
{1, 2,… , 20}, which satisfy the boundary conditions. In order to solve the nonlinear system of equations for 𝛷𝑖, we add an artificial
viscous part to the equation in the form 𝜏�̇�𝑖𝛿𝛷𝑖 = −𝛿(𝛷𝑖, 𝛿𝛷𝑖), where ̇( ) = 𝑑( )∕𝑑𝑡 and 𝜏 is an artificial viscoelastic constant (we
hose 1), so that the system converges. The initial conditions are set to 𝛷𝑖(𝑡 = 0) = 10−2.

We performed numerical analysis using our theory and Abaqus on three samples to show that effective stiffening with 𝛽 > 0
nduces periodic deformation patterns and a super-critical bifurcation (see Fig. A.8(a) in Appendix A.3), while effective softening
ith 𝛽 < 0 induces localized wrinkling and a super-critical bifurcation (see Fig. A.8(b)–(c) in Appendix A.3). On two samples with

hin film the nonlinear effects of only the substrate are analyzed, while on the third sample with a thick film the combined effects
f the substrate nonlinearity and the membrane effects are analyzed. In all cases we keep 𝛼 = 0 to explore the effects of 𝛽 only.
e compared the numerical results to the experimental results at 4 wavelengths of the sample, i.e. 𝑛cr = 8. The wavelength of
rinkles predicted by the theory matched that from the experiments. Both, the experiments and simulations were displacement

ontrolled such that the amplitudes of the deformation patterns qualitatively matched the experimentally obtained ones. Note that
uch comparison is valid because this problem is mainly governed by the geometric effects due to film incompressibility.

𝑖) A thin film on an effective stiffening substrate
Fig. 5(a) and (c) show the results of the numerical analyses of a compressed thin film on an effective stiffening substrate, using

ur theory and Abaqus, respectively. Geometric and material properties were taken from the experiment presented in Fig. 5(b).
hey were as follows: the film of length 𝑙 = 26 mm and the thickness ℎ = 0.47 mm with Young’s modulus 𝐸f = 5.2 MPa was fixed

onto a rubber substrate with tangential Young’s modulus 𝐸s = 0.165 MPa. A similar experiment was conducted by e.g. Brau et al.
(2011). According to the linearized wrinkling analysis using Eq. (10) 𝑘cr = 8𝜋∕𝑙 or equivalently 𝜆theor. = 6.47 mm, is obtained,
which matches the experimentally measured wavelength 𝜆exp. = 6.36 mm quite well. In Abaqus, a neo-Hookean material model was
used for modeling the substrate. A rectangular block of a neo-Hookean substrate that is loaded multiaxially provides an effective
stiffening effect on the film (note that a neo-Hookean material exhibits effective strain softening in a uni-axial extension, see Fig. A.9
in Appendix A.4). Because there exist no finite strain analytical solutions for the response of the substrate, we are unable to calculate
the coefficient of the nonlinearity 𝛽 exactly. Therefore we choose 𝛽 = 0.5 study an effective stiffening response. This results in a
periodic uni-modal deformation pattern, as explained in Section 3.3. As pointed out in Zavodnik et al. (2023), many of these local
energy-minimizing uni-modal deformation patterns can occur, depending on the deformation evolution, which is governed by the
initial conditions, load rate, and viscoelastic properties of the structure, but also by initial imperfections, as explained in the previous
subsection. More on the numerical simulations and experiments can be found in the Appendix.

Even though imperfections imposed in the simulation might be localized before deformation, the final deformation pattern is
periodically symmetric, as suggested by our analysis in Section 3.3, where we point out that mixed modes are penalized in effective
stiffening structures. Intuitively explained, this is because the compressed film releases some membrane energy through some amount
of wrinkling (bending) while it gains a smaller amount of energy in bending and substrate deformation. Intuitively, in an effective
stiffening substrate, it is easier to strain more of the un-strained substrate than to additionally strain the already strained substrate.
Therefore, if the mentioned amount of wrinkling is as uniformly distributed as possible (uni-modal deformation mode), it raises
the total energy of the substrate less than if the same amount of wrinkling is localized. In an effective stiffening structure, uni-
modal deformation modes are forms of the most uniformly distribute deformation and are, therefore, preferred in effective stiffening
structures.
12
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Fig. 5. Deformation patterns from our theory, experiments and simulations. The results are given for thin film with an effective stiffening substrate (a)–(c) and
softening substrate (d)–(f), while for a thick film on a softening substrate was assumed to obtain images in panels (g)–(i). Young’s moduli of the film 𝐸f were
5.2, 1.3 and 1.3 MPa, tangential Young’s moduli of the substrate were 𝐸s,tang. 0.165, 0.0380 and 0.0380 MPa, and thicknesses of the film ℎ were 0.47, 1.55 and
2.65 mm, respectively. The observed wavelengths of the patterns on the experimental samples were 𝜆exp. 6.36, ≈23, ≈40 mm, while the theoretical predictions
for the wavelength 𝜆theor. from the linearized theory yielded 6.47, 21.9, 37.4 mm, respectively. (a) Theoretical prediction of a stable single mode deformation
pattern due to effective stiffening of the substrate. Here, the deformation shape is calculated from 𝑥(𝑠) = ∫ cos𝜑(𝑠)𝑑𝑠 and 𝑦(𝑠) = ∫ sin𝜑(𝑠)𝑑𝑠. (b) Result of a
desktop experiment with a stiffer film (gray) and a softer substrate (pink). The details of the experiment are given in the Appendix. (c) Simulation results
obtained with Abaqus using a neo-Hookean substrate. The parameters used are described in the Appendix. (d) Our theory predicts a localization of deformations
in the substrate made from foam, which exhibits strong softening. (e) Our desktop experiment with green rubber and blackboard sponge as a substrate. (f) Our
simulations in Abaqus where the substrate is modeled as a hyperfoam, which is described in the Appendix. (g) Our theory predicts a reduction in the localization
of deformation due to a thicker film, which stabilizes deformation. (h) An experiment with a blackboard sponge and a thicker rubber substrate, which causes
deformation delocalization. (i) A simulation with hyperfoam as a substrate and a thicker elastic substrate in Abaqus.

(𝑖𝑖) A thin film on an effective softening substrate
Fig. 5(e) shows a localized deformation pattern, obtained experimentally through the compression of a film on a sponge that

exhibits an effective softening response. Again, very similar patterns were obtained in simulations, see Fig. 5(d) and (f). The sample
had a film with length 𝑙 = 80 mm, thickness ℎ = 1.55 mm and the Young’s modulus 𝐸f = 1.3 MPa was fixed onto a substrate with
a Young’s modulus 𝐸s = 0.0380 MPa. The theoretical wavelength is 𝜆theor. = 21.9 mm, while experimentally 𝜆exp. = 23 mm was
measured. To simulate the response of the sponge we used the hyperfoam material model in Abaqus. Again, because there exist no
analytical solution for a finite strain hyperfoam substrate response, we chose 𝛽 = −0.85, which exhibits effective softening response
and deformation localization. The location of localization is usually the location of the largest imperfection or perturbation load,
where the material is already deformed. Therefore, further deformation of the substrate is easier than deforming a virgin material.
This is also visualized in Fig. 3(d), where the strain energy landscape analysis suggests that deformation patterns are composed of
multiple modes, which translate to localization of deformation in the physical space, as also suggested by our analysis in previous
sections.

Similar deformation localization phenomena due to softening substrates were theoretically observed in Wadee et al. (1997) and
Hunt et al. (1989) but have not yet been reproduced experimentally. To the best of our knowledge our wrinkling experiments on
effective softening substrates were done for the first time.

(𝑖𝑖𝑖) A thick film and a softening substrate
Fig. 5(h) shows another (somewhat) localized deformation pattern on an experimental sample on a thicker film with thickness

ℎ = 2.65 mm. Similar deformation patterns were obtained with the use of our own theoretical model and Abaqus, see Fig. 5(g) and
(i), respectively. Here the classical linearized wrinkling theory yields 𝜆theor. = 37.4 mm, which is comparable to the experimentally
observed wavelength 𝜆exp. ≈ 40 mm. Here, due to a thicker substrate the sample regains the periodic symmetry to some extent already
at the beginning. This happens due to the interplay between the effective softening of the substrate and membrane strains in the film
that have a similar effect as an effective stiffening substrate. As apparent form samples (𝑖) and (𝑖𝑖), the effective softening substrate
promotes the localization of deformation, whereas the effective stiffening substrate penalizes the localization of deformation. The
latter is significantly emphasized in thick films because the thickness increases the bending rigidity, 𝐷 ∼ ℎ3, and with that, the
normal membrane force required for the loss of stability quickly becomes large. This results in large membrane strains, due to a
disproportionately smaller increase in membrane rigidity, 𝐶 ∼ ℎ.

3.5. Discussion on the loss and recovery of the symmetry

In all experiments with effective stiffening and softening substrates, we observed that by continuously applying a compressive
load to a film adhered to an elastic substrate, the first symmetry breaking and wrinkle development occur at the location of an
13
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Fig. 6. (a–b) Localization of deformation observed close to the onset of wrinkling in experiments due to a softening characteristic of the substrate at prescribed
strain of the film in experiments and simulations (at 𝜀 = 0.018), respectively. (c–d) Reorganization and recovery of periodic symmetry due to effective stiffening
behavior of the more deformed portions of material in experiments and simulations (at 𝜀 = 0.022), respectively. (e) The measured and fit first Piola–Kirchhoff
stress tensor component 𝑃11 vs. uniaxial stretch 𝜆 for a uniaxial stress–strain characteristic of the hyperfoam substrate used in the simulations. (e) Recovery
of the symmetric deformation pattern that contains a singular deformation mode at 𝜀 = 0.033. Experimentally, we were not able to obtain such a deformation
pattern due to large asymmetry in the compressive vs. tensile response of the foam, which caused large period doubling behavior. The material parameters for
the hyperfoam material model, which were obtained by fitting our uniaxial experimental stress–strain curves, are given as 𝜇1 = 0.2, 𝜇2 = 0.1270, 𝜇3 = 0.00196,
𝜇4 = −0.00032, 𝜇5 = 8.4 × 10−6, 𝛼1 = 20, 𝛼2 = 21, 𝛼3 = 37, 𝛼4 = −0.5, 𝛼5 = −4 and 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 0. Such material behavior matches that in the study
of Attenburrow et al. (1989). More on the methods in simulations and experiments is given in the Appendix.

imperfection. This happens because an imperfection or perpendicular forces (usually at the edge) all locally deform the structure,
providing a lever to the compressive forces in the film to produce a bending moment and form wrinkles there. However, upon
increasing the load in structures with effective stiffening substrates or thick films, the deformation pattern soon de-localizes as mixed
(localized) deformation modes become increasingly penalized by the nonlinear effects, which gain in significance with deformation
magnitude, as presented in the previous Section 3.3. On the contrary, in structures with a softening substrate and a thin film, the
deformation localization is further promoted by the substrate. Such a case is seen in our example in experiments and simulations
in Fig. 6(a)–(b).

To analyze the loss and recovery of symmetry in our experimental and numerical examples in Fig. 6(a)–(f) we used a moderately
thick film and a foam material, which indeed first experiences a softening behavior but later undergoes a rapid effective stiffening
(a uni-axial stress–strain curve is given in Fig. 6(e)). Because of this, the deformation pattern localizes at the left edge as seen in
Fig. 6(a)–(b) for a relatively small load (𝜀 = 0.018), while upon its increase, the effective stiffening in the material and the effects
of a thick substrate take over and cause the deformation pattern to spread across the entire sample rising a periodic symmetry.
With further increase in the load to 𝜀 = 0.033 the sample in numerical simulations completely recovers its periodic symmetry as
shown in Fig. 6(f). Note that we were not able to achieve this with our particular experimental sample. We attribute this to the
large asymmetric response in tension and compression. For further details on the simulations and experiments, see Appendix.

4. Conclusions

In this study, we analyzed wrinkling in films on planar substrates and discussed how the substrate nonlinearities and imperfec-
tions affect multistability, degree of stability, and deformation localization due to the non-convex potential energy landscape. We
have shown that we can largely reduce the dimensionality of the solution through the large displacement theory based on rotations,
helping us circumvent the numerical problems associated with the large amount of available solutions (multistability) in the analysis
of the energy landscape.

Our theoretical model includes nonlinear contributions from the membrane strain energy of the beam (geometric nonlinearities)
and the deformation of the substrate (material nonlinearities). This enables us to access the mechanism of how the membrane energy
in the film and/or effective softening/stiffening of the substrate causes numerous locally stable deformation modes (multistability)
and affect the degree of their stability by controlling the size of the energy barriers between them. Moreover, we find that they also
dictate whether the deformation is localized or distributed across the structure. Specifically, we show that the effective stiffening
effects cause super-critical post-bifurcation behavior and support multiple periodically symmetric deformation patterns that are
distributed across the structure, and their corresponding local minima are divided by the energy barriers. In contrast, the effective
softening (e.g., in foams) causes sub-critical post-bifurcation behavior and supports localized deformations with the corresponding
local energy minima that also divided by the energy barriers. Therefore, such structures experience a dynamic jump to far-from-
trivial equilibrium deformation states with relatively large localization of deformation patterns. The localization due to softening is
permanent, as opposed to that induced by viscoelastic effects, see Zavodnik et al. (2023) and Audoly (2011).
14
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Our theory also helps us analyze the effect of initial imperfections and initial conditions in the evolving structure and can directly
xplain why some numerically found deformation modes can be found in experiments while others cannot, such as in Zavodnik et al.
2023) and Matoz-Fernandez et al. (2020). With our theory, we also recover the results from Brau et al. (2011) in the analysis of
eriod-doubling bifurcation. Finally, we observed that in materials with softening, followed by the effective stiffening behavior, the
irst loss of stability has a sub-critical post-bifurcation response, which means a discontinuous jump from a (non-stable) periodic
attern to a localized deformation pattern. This is then followed by a recovery of periodic symmetry with an increase in the load.

Although we analyzed wrinkling in thin films on nonlinear planar substrates, we anticipate that similar arguments can be
xtended to wrinkling in thin films on 3D planar and curved substrates, such as in wrinkling of films on a half-space, cylinder,
phere, torus, etc. We anticipate that analogous to our theory and experiments, the Gaussian curvature in an initially curved structure
ight supply an additional geometric rigidity and also a localized softening behavior after the symmetry breaking, which potentially

ransforms to stiffening behavior, which recovers the symmetry in the pattern. In fact, the loss and recovery of periodic symmetry
ith deformation magnitude were observed, e.g., in wrinkling in films on spherical (Brojan et al., 2015; Veldin et al., 2019), and

ylindrical substrates (Lavrenčič et al., 2020) experimentally and numerically. On curved shells, we additionally anticipate the
nergy barriers due to stiffening/softening nonlinearities divide the energy landscape into numerous local energy minima with
imilar potential energies, which makes such problems notoriously difficult to solve even numerically.

Although convexification methods are already used in optimization (McCormick, 1976; Tuy and Van Thuong, 1988; Tawarmalani
nd Sahinidis, 2002), they are based on empirical/heuristic arguments. Usually, the energy landscape has to be computed first in
rder to be convexified, which is extremely computationally expensive in cases with large number of degrees of freedom, such
s in wrinkling of thin films on elastic substrates. For wrinkling films on effective stiffening/softening planar substrates, we have
xtracted the influencing parameters, i.e., source terms, that control the energy barriers and multistability. We anticipate that this
s possible also on structures with initial curvature (shells). These parameters still have to be identified and adjusted to convexify
he energy with respect to the sought displacements before computing.
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Appendix. The experiment and numerical simulations

A.1. Experiments

Our experiments shown in Figs. 5 and 6 were made with rubber material, which exhibits effective stiffening, and a foam material,
which exhibits an effective softening response. A film made from either gray (QSil 550 A) with 𝐸 = 5.2 MPa or green (Elite double
32) rubber with 𝐸 = 1.3 MPa was placed onto either a pink (Elite Double 8) rubber material with 𝐸 = 0.165 MPa or a yellow
blackboard sponge made from polyurethane foam with tangential Young’s modulus 𝐸 = 0.0380 MPa. All the tangential moduli were
measured using a compressive test, except for the foam, which was also extended.

In the experiment in Fig. 5(b), a softer (pink Elite Double 8) rubber was poured on a film made of a stiffer (gray QSil 550 A)
rubber material, which was polymerized beforehand. The softer rubber then shrunk during curing which induced initial wrinkling
that was even further increased by additionally squeezing of the sample. Similarly, in the softening experiments in Fig. 5(e), (h)
and Fig. 6(a) and (c) an already polymerized rubber material (green Elite Double 32) was fixed to a polyurethane foam cut from a
blackboard sponge (yellow) using an additional fresh mix of green rubber, which acted as glue. The structure was then compressed
15

using a clamp, thereby ensuring fixed boundary conditions.



Journal of the Mechanics and Physics of Solids 191 (2024) 105774J. Zavodnik and M. Brojan
Fig. A.7. The domain for numerical simulations. The displacement and rotational degrees of freedom of a beam were tied to those of the underlying 2D solid.

A.2. Abaqus simulations

We used a neo-Hookean and Hyperfoam material model for the substrate made from silicon rubber and foam, respectively. A
beam B21 Abaqus finite element was used and tied to a 2D solid (CPS4R Abaqus element); see Fig. A.7. At both vertical edges, the
horizontal displacement was fixed, while the vertical was free. All displacements were fixed at the bottom. The normal compressive
membrane stresses that induced wrinkling were imposed through heating of the beam with a thermal expansion coefficient 𝛼 = 1.

The tangential stiffness of the rectangular incompressible neo-Hookean substrate is 2𝜇, which can be obtained from the
incompressibility assumption, see e.g. Audoly and Boudaoud (2008). The wavenumber 𝑘 = 𝜋𝑛∕𝑙 at the onset of wrinkling, therefore,
depends on the ratio 𝑘 = 3

√

𝜇∕𝐷, and does not significantly change with the growing magnitude of wrinkles.
Unless special algorithms for bifurcation analyses are implemented, numerical solvers, such as commercial ones, require a

perturbation to find a non-trivial, wrinkled solution. In our case, we initiated wrinkling with a small vertical perturbation force at
the edge of the domain (see Fig. A.7) of the magnitude 𝐹 = 10−5𝐸ℎ, which produces a negligible influence on the deformation field.
Such a type of perturbation also agrees with experimental results, where wrinkling usually starts at the edge due to experimental
imperfections at the boundary.

To be able to simulate wrinkling in both cases of the sub- and super-critical post-bifurcation case, a static Riks path following
algorithm was used. To obtain the solutions presented in Figs. 5 and 6, the combinations of parameters (such as perturbation force
magnitude, path step, and expected path length) had to be determined by trial and error.

Two different material models were used; a neo-Hookean and a Hyperfoam material to simulate a stiffening and a softening
substrate, respectively.

(Thin film on a stiffening substrate) In the simulation with a stiffening material in Section 3.4, displayed in Fig. 5(c), the film
was modeled with standard beam elements with the beam thickness ℎ = 0.47 mm, length of 𝑙 = 26 mm and Young’s modulus 𝐸 = 5.2
MPa in Abaqus, while a neo-Hookean material model was used for the substrate. Its elastic strain energy density can be written as
𝑊 = 𝜇 (tr(𝐂) − 2) ∕2 + 𝜆(det(𝐂) − 1)2∕2, Smith (2009) where 𝐂 is the right Cauchy–Green deformation tensor and 𝜇 and 𝜆 are the
shear modulus and first Lame parameter, respectively. To simulate incompressible behavior, we used a material constant 𝜆, much
larger than 𝜇 = 𝐸∕3, where 𝐸 = 0.165 MPa. Such material exhibits effective stiffening in wrinkling, although it is effective softening
in uni-axial extension.

(Thin film on a softening substrate) In the simulation in Section 3.4, displayed in Fig. 5(f), the film was also modeled using
standard beam elements with the beam thickness ℎ = 1.55 mm, length of 𝑙 = 80 mm and Young’s modulus 𝐸 = 1.3 MPa in
Abaqus. Here, the substrate was modeled using a hyperfoam material. Such hyperfoam material has a strain energy given by Ogden
strain energy density function 𝑊 =

∑5
𝑖=1 𝜇𝑖∕𝛼

2
𝑖
(

(𝜆𝛼𝑖1 + 𝜆𝛼𝑖2 + 𝜆𝛼𝑖3 − 3) + ((𝜆1𝜆2𝜆3)𝛼𝑖𝛽𝑖 − 1)∕𝛽𝑖
)

, see, e.g., Smith (2009) where 𝜆𝑗 are the
principle stretches. For the sake of simplicity, we neglected the volumetric part, as we assumed that there is no Poisson effect. We
measured the uniaxial stress–strain curve of the foam material, which we fit with the coefficients in the Ogden hyperfoam material
model with 𝜇1 = 0.2, 𝜇2 = 0.1270, 𝜇3 = 0.00196, 𝜇4 = −0.00032, 𝜇5 = 8.4 × 10−6, 𝛼1 = 20, 𝛼2 = 21, 𝛼3 = 37, 𝛼4 = −0.5, 𝛼5 = −4 and
𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 0. The uni-axial stress–strain experimental results and the fit are shown in Fig. 6(e). It clearly shows
softening behavior in smaller strain regimes that becomes stiffening at larger stretches.

(Relatively thick film on a softening substrate and reorganization of deformation pattern) In Section 3.4 Fig. 5(i) and
Section 3.5 Fig. 6(b), (d) and (f) the substrate was modeled using a hyperfoam material as in the previous case, while the film was
thicker with ℎ = 2.65 mm with the same other geometric and material properties as before.

A.3. Nature of bifurcations

Fig. A.8(a) shows that a thin film on an effective strain stiffening substrate exhibits a super-critical bifurcation when compressed.
On the other hand, Fig. A.8(b) and (c) show that an effective softening substrate exhibit a sub-critical bifurcation. In these two cases
the post-bifurcation response is multistable and therefore much more difficult to analyze numerically. When numerically analyzing
such systems with the softening response, even the advanced path-following algorithms may encounter serious difficulties (see a
recent paper on the solution Kusuma Chandrashekhara and Zupan, 2024).
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Fig. A.8. The diagrams (a)–(c) show the membrane reaction force at the left boundary 𝐹 of the film as a function of the load strain 𝜀. The diagrams (a), (b)
nd (c) correspond to the deformation patterns from the simulations in Fig. 5(a), (d) and (e) respectively. The panel (a) shows wrinkling film on a neo-Hookean
ubstrate, which due to its effective strain stiffening has a super-critical bifurcation. Conversely, panels (b) and (c) show a thin and a thick wrinkling film on a
yperfoam material, respectively. The Hyperfoam material is effective strain softening and therefore has a sub-critical bifurcation.

Fig. A.9. The diagrams show the normalized von Mises stress as a function of the normalized wrinkle amplitude for the location of (a) maximum extension
of the substrate and (b) maximum compression in the substrate, which deforms as a consequence of the compressed film, that is attached at the surface of the
substrate. The results are taken from Abaqus simulation presented in Fig. 5(c). The location of the maximum extension/compression of the substrate is on the
substrate–film interface, right at the top/bottom of a wrinkle. As shown panels (a) and (b) the neo-Hookean material exhibits effective stiffening although the
neo-Hookean material behaves as effectively softening in a uni-axial extension.

A.4. Effectively stiffening effects in wrinkling on neo-Hookean substrate

Although the neo-Hookean material model exhibits an effective softening stress–strain characteristic during a uni-axial extension,
the stress–strain characteristic during a plane strain film–substrate setting, where the film stretches the substrate, is effectively
stiffening. This is shown in Fig. A.9(a) and (b) where the normalized von Misses stress is plotted as a function of the normalized
wrinkle amplitude for the deformation pattern, shown in Fig. 5(c), which is obtained from the same Abaqus simulation. The location
of the maximum extension/compression of the substrate is on the substrate–film interface, right at the top/bottom of a wrinkle.
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